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Motivation

Research Question:
What is the impact on competition of information sharing among bidders in a
series of interlinked auctions?

How might dynamic consideration shape thinking?

How to formulate a modeling environment that can address questions like
these, that also allows for substantive dynamics

Approach:

Computational model - new theory and analysis.

Why is this interesting?

Information sharing is somewhat neglected area of competition policy, recently
relevant in several merger and conduct settings
Common applied mechanism design concern
Computational oligopoly models have tended to struggle with asymmetric
information
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The setting: Infinitely repeated game, stage game looks
like:

Two loggers 
each have a 
stock of 
trees that 
can be 
harvested!
(private 
info)!

A new 
stumpage 
auction is 
announced!
- FPSB !

Learn 
bidder-
specific 
fixed cost to 
participate!

Bid (or not)!

Winner 
realized!

Bidders learn 
who 
participated, 
who won, and 
the winning 
bid!

Winner 
learns the 
timber in 
the lot that 
was won 
(stochastic 
and private 
info)!
!

Loggers 
engage in 
harvest 
(stochastic 
and private 
info)!

Loggers’ 
stock of 
trees is 
updated!
(private 
info)!

Loggers sell 
harvest to 
competitive 
market!
!
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The setting: Infinitely repeated game, stage game looks
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Context: Antitrust treatment of information sharing

US: “The sharing of information relating to price, cost, output, customers, or
strategic planning is more likely to be of competitive concern than the
sharing of less competitively sensitive information.”

- FTC/DOJ Collaboration Guidelines

Rule of reason approach in conduct cases. Cases are pretty rare in modern era.
Issues have arisen in mergers: falls under broad rubric of coordinated effects.

EU: Sharing of information relating to future price is a “restriction of
competition by object”. This may include non-price but strategically relevant
information (See Dole Foods).

Conduct cases are more common in modern era.
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Takeaways

Information sharing increases the precision with which a firm knows its rivals’
states

For some states, this intensifies competition (e.g. when both firms have low
inventory)
Firms increase participation to avoid these states
Thus, participation increases, and quantity increases.
But prices drop, as more time in spent in states where competition is less
intense.

The “price low bad, price high good” intuition for assessing competition
between bidders seems poorly suited to this environment.
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Model set-up
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harvested!
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stumpage 
auction is 
announced!
- FPSB!
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bidder-
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fixed cost to 
participate!
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Winner 
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who 
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who won, and 
the winning 
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learns the 
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Loggers 
engage in 
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Loggers’ 
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Loggers sell 
harvest to 
competitive 
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!

Inventory of timber is ωit , will usually drop the t subscript
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Inventory of timber is ωit

Fixed cost is Fit ∼ U[Fl ,Fh], i.i.d. across bidders (private info)



Model set-up

Asker, Fershtman, Jeon, Pakes Information Sharing Apr 2018 11 / 52

Two loggers 
each have a 
stock of 
trees that 
can be 
harvested!
(private 
info)!

A new 
stumpage 
auction is 
announced!
- FPSB!

Learn 
bidder-
specific 
fixed cost to 
participate!

Bid (or not)!

Winner 
realized!

Bidders learn 
who 
participated, 
who won, and 
the winning 
bid!

Winner 
learns the 
timber in 
the lot that 
was won 
(stochastic 
and private 
info)!
!

Loggers 
engage in 
harvest 
(stochastic 
and private 
info)!

Loggers’ 
stock of 
trees is 
updated!
(private 
info)!

Loggers sell 
harvest to 
competitive 
market!
!

Inventory of timber is ωit

Fixed cost is Fit

Bid ∈ {∅, b, ..., 3b, ...b}



Model set-up

Asker, Fershtman, Jeon, Pakes Information Sharing Apr 2018 12 / 52

Two loggers 
each have a 
stock of 
trees that 
can be 
harvested!
(private 
info)!

A new 
stumpage 
auction is 
announced!
- FPSB!

Learn 
bidder-
specific 
fixed cost to 
participate!

Bid (or not)!

Winner 
realized!

Bidders learn 
who 
participated, 
who won, and 
the winning 
bid!

Winner 
learns the 
timber in 
the lot that 
was won 
(stochastic 
and private 
info)!
!

Loggers 
engage in 
harvest 
(stochastic 
and private 
info)!

Loggers’ 
stock of 
trees is 
updated!
(private 
info)!

Loggers sell 
harvest to 
competitive 
market!
!

Inventory of timber is ωit ; Fixed cost is Fit ; Bid ∈ {∅, b, ..., 3b, ...b}
Ii,t = (Ji,t ,Fi,t), Ji,t = (ωi,t , ξt), ξnt ≡ [iwt , b

∗
t , pt ] or, if information exchange,

ξnt ≡ [iwt , ωt ]



Model set-up

Asker, Fershtman, Jeon, Pakes Information Sharing Apr 2018 13 / 52

Two loggers 
each have a 
stock of 
trees that 
can be 
harvested!
(private 
info)!

A new 
stumpage 
auction is 
announced!
- FPSB!

Learn 
bidder-
specific 
fixed cost to 
participate!

Bid (or not)!

Winner 
realized!

Bidders learn 
who 
participated, 
who won, and 
the winning 
bid!

Winner 
learns the 
timber in 
the lot that 
was won 
(stochastic 
and private 
info)!
!

Loggers 
engage in 
harvest 
(stochastic 
and private 
info)!

Loggers’ 
stock of 
trees is 
updated!
(private 
info)!

Loggers sell 
harvest to 
competitive 
market!
!

Inventory of timber is ωit ; Fixed cost is Fit ; Bid ∈ {∅, b, ..., 3b, ...b}
Ii,t = (Ji,t ,Fi,t), Ji,t = (ωi,t , ξt), ξnt ≡ [iwt , b

∗
t , pt ] or, if information exchange,

ξnt ≡ [iwt , ωt ]

Timber in lot is given by θ+ ηt where θ is the average amount and ηt is an i.i.d
discrete random variable.
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Harvest is given by e + εi,t where εi,t is a discrete random variable
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Timber in lot is given by θ + ηt

Harvest is given by e + εi,t

Each unit of harvested ω sells for a price of 1



Model setup, other issues

State space consists of pay-off relevant and informationally relevant variables
- not full history

Pay-off relevant: current profits depend on it and it is not a control
Informationally relevant: even if no other player conditions on the variable for
play, it is profit increased by conditioning on it (i.e. revealing about private
states in some way)

Every T periods all information revealed to everyone. Needed for current
existence proofs and computational feasibility (finite state space).

There is a discount factor, β
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Model set-up, dynamic system

V (Ji ,Fi ) = max
{
W (∅|Ji ),max

b∈B
[W (b|Ji )− Fi ]

}
(1)

Letting β be the discount factor, the firm’s expectation of current period revenue
(which excludes Fi ) is

πe(b|Ji ) =
∑

εi ,η

[
pw (b|Ji )

(
min{ωi+θ+η, e+εi}−b

)
+[1−pw (b|Ji )] min{ωi , e+εi}

]
p(εi )p(η),

(2)
It follows that, for b ∈ B,

W (b|Ji ) = πe(b|Ji ) + (3)

pw (b|Ji )β
∑

εi ,η,ξ′F ′i

(
ω′(ω, η, εi ), ξ

′,F ′i
)
p(ξ′|ξ, ωi , b, i = iw )p(F ′i )p(η)p(εi )

+(1− pw (b|Ji ))β
∑

εi ,ξ′,F ′i

V
(
ω′(ω, εi ), ξ

′,F ′i
)
p(ξ′|ξ, ωi , b, i 6= iw )p(F ′i )p(εi )
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Model set-up, dynamic system

V (Ji ,Fi ) = max
{
W (∅|Ji ),max

b∈B
[W (b|Ji )− Fi ]

}
(4)

Letting β be the discount factor, the firm’s expectation of current period revenue
(which excludes Fi ) is

πe(b|Ji ) =
∑
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W (b|Ji ) = πe(b|Ji ) + (6)

pw (b|Ji )β
∑

εi ,η,ξ′F ′i

(
ω′(ω, η, εi ), ξ

′,F ′i
)
p(ξ′|ξ, ωi , b, i = iw )p(F ′i )p(η)p(εi )

+(1− pw (b|Ji ))β
∑

εi ,ξ′,F ′i

V
(
ω′(ω, εi ), ξ

′,F ′i
)
p(ξ′|ξ, ωi , b, i 6= iw )p(F ′i )p(εi )

Asker, Fershtman, Jeon, Pakes Information Sharing Apr 2018 19 / 52



Map of talk

Model set-up

Equilibrium
Adding information sharing

Computation and parametrization

Results

Conclusion

Asker, Fershtman, Jeon, Pakes Information Sharing Apr 2018 20 / 52



Equlibrium, REBE
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Equlibrium, REBE

Asker, Fershtman, Jeon, Pakes Information Sharing Apr 2018 22 / 52

Definition of a REBE:
A restricted experience based equilibria consists of the following three objects.

1 A set R that is a subset of the state space

2 Bidding and participation strategies, b∗(Ji ,Fi )

3 A set of numbers W ≡ {W ∗(b|Ji )b∈B∪∅} representing the firm’s perceptions
of the expected discounted value of bid b



Equilibrium, REBE
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Definition of a REBE:
A restricted experience based equilibria consists of the following three objects.

1 A set R that is a subset of the state space

2 Bidding and participation strategies, b∗(Ji ,Fi )

3 A set of numbers W ≡ {W ∗(b|Ji )b∈B∪∅} representing the firm’s perceptions
of the expected discounted value of bid b

For these objects to define a REBE they must satisfy the following three conditions.

C1: R is a recurrent class. That is, with probability one, any subgame starting
from an s0 ∈ R will generate sample paths that are within R forever.
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Definition of a REBE:
A restricted experience based equilibria consists of the following three objects.

1 A set R that is a subset of the state space

2 Bidding and participation strategies, b∗(Ji ,Fi )

3 A set of numbers W ≡ {W ∗(b|Ji )b∈B∪∅} representing the firm’s perceptions
of the expected discounted value of bid b

For these objects to define a REBE they must satisfy the following three conditions.

C1: R is a recurrent class.

C2: Optimality of strategies. Conditional on W ≡ {W ∗ (b|Ji )b∈B∪∅}, the
strategies are optimal. That is

b∗(Ji ,Fi ) = arg max
b∈B∪∅

[W ∗(b|Ji )− {b 6= ∅}Fi ] .



Equilibrium, REBE
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Definition of a REBE:
A restricted experience based equilibria consists of the following three objects.

1 A set R that is a subset of the state space

2 Bidding and participation strategies, b∗(Ji ,Fi )

3 A set of numbers W ≡ {W ∗(b|Ji )b∈B∪∅} representing the firm’s perceptions
of the expected discounted value of bid b

For these objects to define a REBE they must satisfy the following three conditions.

C1: R is a recurrent class.

C2: Optimality of strategies.

C3: Consistency of values on R. Consistency requires that the perception of
discounted values, generated by every possible choice at every Ji that is a
component of an s ∈ R equals the expected discounted value of returns
generated by that choice from that Ji ; where expectations are taken using the
empirical distribution of outcomes from that Ji .



Equilibrium, relationship to other equilibrium notions,
issues

“In an self-confirming equilibrium, each players strategy is a best response to his
beliefs about the play of his opponents, and each player’s beliefs are correct along
the equilibrium path of play”

Substantive difference between REBE and SCE is that REBE requires beliefs
about non-equilibrium path play that keeps you in the recurrent class to be
consistent.

Wi(b*|Ji)	=	6

Wi(b|Ji)	=	2

Wi(b*|Ji)	=	20
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Equilibrium, relationship to other equilibrium notions,
issues

“In an self-confirming equilibrium, each players strategy is a best response to his
beliefs about the play of his opponents, and each player’s beliefs are correct along
the equilibrium path of play”

Substantive difference between REBE and SCE is that REBE requires beliefs
about non-equilibrium path play that keeps you in the recurrent class to be
consistent.

Return from non-optimal play at boundary points (i.e. doing something that
takes us outside recurrent class) need not be consistent.

This is a source of multiplicity and potentially problematic equilibrium
selection if computation poorly initiated
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Equilibrium, adding boundary consistency

Boundary Consistency: the perceived value of off-equilibrium-path play from a
boundary point ≥ the expected discounted value of profits from that point when
all agents use their equilibrium policies

Boundary	
Point

Wi(b*|Ji)	=	6

Wi(b|Ji)	=	2

Wi(b*|Ji)	=	20
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Equilibrium, adding boundary consistency

C4:Boundary Consistency.
Let πi (b

∗, s,F ) ≡ π(b∗i (Ji ,Fi ), b
∗
−i (F−i , J−i ),Fi , Ji ) and

πi (b, b
∗
−i , s,F ) ≡ π(b, b∗−i (F−i , J−i ),Fi , Ji ). Then our condition is ∀(b, Ji )

component of (b, s) ∈ B and for every Fi ,

W (b∗|Ii )− {b∗(Ji ,Fi ) 6= ∅}Fi ≥

∑

J−i ,F−i

[
πi (b, b

∗
−i , s,Fi ))+

∞∑

γ=1

βγ
∑

sγ ,Fγ

πi (b
∗,Fγ , sγ)p(sγ |sγ−1, b∗,Fγ)p(Fγ)

]
p(F−i )µ

E (J−i |Ji ). ♠

where p(sγ |sγ−1, b∗,Fγ) is the probability of reaching state sγ at time γ given
that at time γ − 1 the state is sγ−1, participation fees are Fγ and the players play
the equilibrium strategies b∗.
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Adding information sharing: IE with commitment

Baseline (B) is above model with T=4

Information Exchange (IE) treatment is above model with T=1 (learn ω’s
every period)
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Model set-up
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Inventory of timber is ωit ; Fixed cost is Fit ; Bid ∈ {∅, b, ..., 3b, ...b}
Ii,t = (Ji,t ,Fi,t), Ji,t = (ωi,t , ξt), ξnt ≡ [iwt , b

∗
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ξnt ≡ [iwt , ωt ]



Adding information sharing: Voluntary IE (no
commitment)

Baseline (B) is above model with T=4

Information Exchange (IE) treatment is above model with T=1 (learn ω’s
every period)

Voluntary IE (VIE) introduces a choice to reveal information for next 4
periods. Choice must be unanimous. Choice made at same time as bid. Bid
is a b and a ‘yes/no’

Simplest way to put in a endogenous switch between B and IE
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Computation: testing for equilibrium

Computation is done via a reinforcement learning algorithm with v. high
starting values

Testing for convergence to REBE is done by comparing the
W ≡ {W ∗(b|Ji )b∈B∪∅} in memory, to the estimated analog from simulating
a long path holding strategies constant. Details in the paper.

Testing for boundary consistency

Simulate to find boundary points (see where each possible action at a point in
the recurrent class go to)
Take boundary points, for each action compare W ≡ {W ∗(b|Ji )b∈B∪∅} to the
estimated continuation value generated by simulating many iterations that
each travel outside the recurrent class for a long time (stop if return).
Details in the paper
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ParameterizationTable 1: Parameter specifications

B IE V IE
Parameters that vary:

Distribution of fixed cost of participation Fi U[0,1] U[0,1] U[0,1]
Mean timber in a lot ✓ 3.5 3.5 3.5
Periods between ! revelation T 4 1 {1,4}
Discount factor � 0.9 0.9 0.9

Other parameter values:

Mean harvest capacity e 2
Disturbance around ✓ ⌘ {-0.5,0.5}
Probability on ⌘ realizations {0.5,0.5}
Disturbance around e ✏ {-1,0,1}
Probability on ✏ realizations {0.33,0.33,0.33}
Bidding grid {0.5,1,1.5,2}
Number of firms/bidders 2
Retail price of a unit of timber 1

4.2 Computational burden and updating procedure

A restricted EBE is computed using the algorithm provided in section 3.1. Recall that
there may be many equilibria that satisfy our equilibrium conditions. The choice of
initial conditions for continuation values (our {W 0(·}) is one determinant of which
equilibria the algorithm will compute. If the initial conditions are higher than possible
equilibrium values then all policies are likely to be explored, and, as a result, any
equilibrium the algorithm converges to is likely to be boundary consistent. The cost of
choosing high initial conditions is that they are likely to cause the algorithm to require
many iterations before it converges to equilibrium values.

We incurred that cost and used as initial conditions

W 0(b|Ji) = e

✓
1 � F + 0.5

✓ + 1

◆
1

1 � �
+ !i

F + 0.5

✓ + 1

for all (b, Ji) 2 (B, J ). To see why we chose these initial values, note that e/(1 � �)
is the discounted value of being able to sell the mean harvest forever and e/(✓ + 1) is
smaller than the periodicity that the firm would have to win the auction in order to
have the timber needed to sell e units in every period. So (F + .5)e/[(✓ + 1)(1 � �)]
is less than the cost of bidding in enough periods to be able to sell e units in every
period if all the auctions that the firm bid on were won and the winning bid was the
lowest bid possible. Finally !(F + .5)/(✓ + 1) adds back in the cost of the timber the
firm has already stored.

Table 2 provides statistics that summarize di↵erent aspects of the computational
burden we incurred in computing the equilibria. Partly as a result of our choice of
initial conditions, the number of states visited (and hence explored) in both the B and
the V IE algorithms was large; 7.5 and 7.9 million respectively. Though the recurrent
classes were (less than) an order of magnitude smaller than this (less than 330,000),
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Computational burdenTable 2: Computational details

Size of recurrent class:
B IE V IE

325,843 2,089 328,688

Number of all states visited during computation:
B IE V IE

7,495,307 2,724 7,908,122

Computation times per 5 million iterations (in hours):
B IE V IE

1:38 1:06 1:56
Computation times for testing for a REBE (5 million iterations, in hours):

B IE V IE
1:43 1:09 2:00

Computation times for testing for boundary consistency (100,000 iterations, in hours):
B IE V IE

3:03 0:16 75:41

Notes: Computation was conducted in MATLAB version R2013a using (a Dell Precision T3610 desktop

with) a 3.7 GHz Intel Xeon processor and 16GB RAM on Windows 7 Professional. A round of computation

includes steps 1 and 2 of the computational procedure given above. It is 55 million iterations for B and V IE

and 15 million iterations for IE.

bid, which distorts participation somewhat, the planner’s allocation problem would be
equivalent to that of the ideal, perfectly coordinated, cartel; the planner maximizes
the discounted value of the sum of future net cash flows.

The average bid for B, IE and V IE, is 1.09, 0.94 and 1.04 respectively. The
ordering of bids across models is the same if we look at winning bids, or winning
bids conditional on the number of bidders. So if lower prices correspond to weakened
competition, the view that information sharing (of strategic data) is akin to collusion
has some support, in that both phenomena generate lower bids.

On the other hand static auction theory implies that increased participation sig-
nifies more competition which should, in turn, lead to lower bids; and there is more
participation in the IE than in the B equilibrium. Part of the participation di↵erence
might be attributed to the more detailed information structure in the IE equilibrium
facilitating more coordinated bids, as there are less periods in the IE equilibrium when
neither firm bids (.015 vs .04 percent). However, the statement that more information
leads to softer competition seems to be clearly at odds with the relationship between
bids and participation in the periods with at least one bidder, as even in those periods
there is more participation in the IE than the B equilibrium (1.63 vs 1.59).

Of course what might be confusing di↵erences in behavior in a model of a static
(or a repeated) game, might not be confusing in the context of a dynamic game.
In particular di↵ering dynamic incentives will generate di↵erences in the propensity
to hold di↵erent stocks of lumber. We expect participation and bidding to di↵er with
di↵erences in those stocks, and the table’s comparisons between the IE and B outcomes
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Results: Judging competition, price vs participation
Table 3: Summary statistics, in per-period terms, by model

B IE V IE SP
Avg. bid 1.09 0.94 1.04 -
Avg. winning bid (revenue for the auctioneer) 1.11 0.98 1.07 -
Avg. winning bid conditional on � 1 firm participating 1.16 0.98 1.12 -
Avg. winning bid conditional on 1 firm participating 1.06 0.67 0.99 -
Avg. winning bid conditional on 2 firms participating 1.23 1.16 1.20 -
Avg. # of participants 1.52 1.63 1.52 1
Avg. # of participants, conditional on � 1 firm participating 1.59 1.63 1.59 1
Avg. participation rate 0.76 0.81 0.76 0.50
% of periods with no participation 4.39 0.15 3.85 0.004
Avg. total revenue 3.35 3.49 3.37 3.50
Avg. profit 0.81 0.87 0.84 -
% of periods in which a firm with the lowest omega wins 66.37 60.80 65.32 85.96
conditional on � 1 firm participating Average total social surplus 2.73 2.72 2.74 3.10

Notes: Here, and in tables 4, 5, 6, and 7, the per-period profit is defined as ⇡(!i) � I{i=win}bi � {bi 6=
?}Fi = min

�
!i + I{i=win}(✓ + ⌘), e + ✏i

 
� I{i=win}bi �{bi 6= ?}Fi. Total revenue is defined as

P
i ⇡(!i) =P

i min
�
!i + I{i=win}(✓ + ⌘), e + ✏i

 
. Total social surplus is defined as

P
i {⇡(!i) � {bi 6= ?}Fi}. Averages

are taken over periods. The statistics are computed based on a 5 million iteration simulation of each model.

are comparing di↵erent weighted averages of the stock combinations. The probable role
of dynamics in explaining di↵erences in the implications of the information environment
also comes out clearly when we compare Table 3 to Table 4. Table 3 indicates that
more information (the IE equilibrium) generates a higher discounted cash flow and
therefore higher average profits, but table 4 makes it clear that once we condition on
the stock of timber the B equilibrium generates higher profits almost always.32

Before leaving table 3 we note that all three models deliver (essentially) the same
social surplus (albeit with IE being lowest by 0.01). However the maximal social
surplus from the market equilibria, 2.73, is much lower than the social surplus attained
by the planner (3.10). The participation numbers indicate why the planner does so
much better. The planner only ever lets one firm enter the auction, thus saving on the
cost F (the planner also benefits from being able to better coordinate the path of the !-
tuple). In the IE equilibrium the firms generate almost the same revenue (equivalently,
output) per period as does the planner, but require much greater participation to do
so, thus generating a lower social surplus. By contrast, firms in B are less e↵ective
at revenue generation (their stocks are not always high enough to satisfy the demand
that faces them), but generate less wasteful participation.33

To explain these phenomena we have to consider the relationship between the dif-
ferent information structures and dynamic incentives. We begin with the di↵erences
between the IE and B equilibria (the discussion of VIE is delayed until section 4.3.1).
Table 4 divides the state space by !-tuples, and shows the probability distribution over

32The only exception are states which are visited only .15% (1.12%) of the periods in the B (IE) equilibrium.
33All the e↵ects described in the preceding paragraphs become much more muted when the models are

computed with � = 0.8. For instance, ‘Avg. bid’ across the three models (B,IE and V IE in order) is
0.82,0.82 and 0.80; ‘Avg. # of participants’ is 1.45, 1.46 and 1.46 and social surplus is 2.77, 2.82 and 2.77 (as
compared to 3.07 in SP ). All of which suggests that continuation values matter for the observed conduct.
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Results: Judging competition, price vs participation
Table 3: Summary statistics, in per-period terms, by model

B IE V IE SP
Avg. bid 1.09 0.94 1.04 -
Avg. winning bid (revenue for the auctioneer) 1.11 0.98 1.07 -
Avg. winning bid conditional on � 1 firm participating 1.16 0.98 1.12 -
Avg. winning bid conditional on 1 firm participating 1.06 0.67 0.99 -
Avg. winning bid conditional on 2 firms participating 1.23 1.16 1.20 -
Avg. # of participants 1.52 1.63 1.52 1
Avg. # of participants, conditional on � 1 firm participating 1.59 1.63 1.59 1
Avg. participation rate 0.76 0.81 0.76 0.50
% of periods with no participation 4.39 0.15 3.85 0.004
Avg. total revenue 3.35 3.49 3.37 3.50
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conditional on � 1 firm participating Average total social surplus 2.73 2.72 2.74 3.10
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. Total social surplus is defined as

P
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are taken over periods. The statistics are computed based on a 5 million iteration simulation of each model.

are comparing di↵erent weighted averages of the stock combinations. The probable role
of dynamics in explaining di↵erences in the implications of the information environment
also comes out clearly when we compare Table 3 to Table 4. Table 3 indicates that
more information (the IE equilibrium) generates a higher discounted cash flow and
therefore higher average profits, but table 4 makes it clear that once we condition on
the stock of timber the B equilibrium generates higher profits almost always.32

Before leaving table 3 we note that all three models deliver (essentially) the same
social surplus (albeit with IE being lowest by 0.01). However the maximal social
surplus from the market equilibria, 2.73, is much lower than the social surplus attained
by the planner (3.10). The participation numbers indicate why the planner does so
much better. The planner only ever lets one firm enter the auction, thus saving on the
cost F (the planner also benefits from being able to better coordinate the path of the !-
tuple). In the IE equilibrium the firms generate almost the same revenue (equivalently,
output) per period as does the planner, but require much greater participation to do
so, thus generating a lower social surplus. By contrast, firms in B are less e↵ective
at revenue generation (their stocks are not always high enough to satisfy the demand
that faces them), but generate less wasteful participation.33

To explain these phenomena we have to consider the relationship between the dif-
ferent information structures and dynamic incentives. We begin with the di↵erences
between the IE and B equilibria (the discussion of VIE is delayed until section 4.3.1).
Table 4 divides the state space by !-tuples, and shows the probability distribution over

32The only exception are states which are visited only .15% (1.12%) of the periods in the B (IE) equilibrium.
33All the e↵ects described in the preceding paragraphs become much more muted when the models are

computed with � = 0.8. For instance, ‘Avg. bid’ across the three models (B,IE and V IE in order) is
0.82,0.82 and 0.80; ‘Avg. # of participants’ is 1.45, 1.46 and 1.46 and social surplus is 2.77, 2.82 and 2.77 (as
compared to 3.07 in SP ). All of which suggests that continuation values matter for the observed conduct.
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Results: IE reduces profits conditional on the state

Table 4: Probability Distribution by !-tuple for B, IE and SP

Prob. Dist. (%) Profit
(!i, !�i) B IE SP B IE

( 4, 4) 65.51 32.59 90.12 0.68 0.52
( 4, 5 � 7) 12.61 19.09 4.52 0.57 0.58
( 4,� 8) 4.05 10.55 0.28 0.60 0.59

(5 � 7, 4) 12.61 19.09 4.52 1.51 1.26
(5 � 7, 5 � 7) 0.88 5.72 0.22 1.49 1.46
(5 � 7,� 8) 0.14 1.12 0.02 1.49 1.13

(� 8, 4) 4.05 10.55 0.28 1.62 1.58
(� 8, 5 � 7) 0.14 1.12 0.02 1.66 1.87
(� 8,� 8) 0.01 0.17 0.00 1.72 1.56

Notes: This table shows the probability of intervals of !-tuples for B, IE and SP . Here, and in tables 5,

6, and 7,the per-period profit is a probability weighted average, over the states underlying each !-tuple.

these !-tuples for each of B and IE as well as the average per-period profits earned by
the firms with !’s in the tuple. The distribution for SP is also provided for comparison.

Both B and IE are dynamic games in which the control that the firm uses to change
its stock of timber is its bid. Hence, to understand how di↵erences in information sets
shape the di↵erent paths taken through the state space, an examination of bidding is
required. The salient feature of the data in table 4 that the bids must explain is how
the IE information structure generates bids that keep the firms in higher ! tuples. The
lower !-tuples, the tuples in which both firms have !  4, are the least profitable tuples
in either equilibrium; indeed the maximal profits for a firm with !  4 is less than half
the minimal profits with ! � 4. What is evident from table 4 is that the additional
information available to firms in the IE equilibrium enables them to stay away from
states with !  4 with greater propensity than the firms in the B equilibrium are able
to. The fraction of periods with both firms with !  4 is 65.5% in B compared to
32.6% is IE, while the fraction of states with at least one firm with !  4 is just over
62% for IE compared to just over 82% for B.

In contrast the social planner spends more time in the ( 4, 4)-tuples than either
firms in B or IE, thereby generating a smaller cost of holding the timber already
procured. So IE firms maintain ! stocks that are greater, and in that sense even less
e�cient, than in the B equilibrium. Table 4 also reveals that firms in IE spend more
time in states that are asymmetric, in the sense of having one firm with a high ! and
one with a low !.

Table 5 contains the probability distributions over bids that underlie the distribu-
tion over the ! -tuples examined in table 4 together with average profits in those states.
Grey shaded cells indicate bids that are more frequent in IE than in B. Notice first
that, when both firms’ have !  4, bidding is more aggressive in the IE than in the
B equilibrium; there is both more participation in IE and a higher fraction of bids are
higher than the minimal bid in these states. This reinforces the impression that the
increased information created when moving from B to IE is not allowing the firms in
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Results: Changing the transitions through the state space

Table 4: Probability Distribution by !-tuple for B, IE and SP

Prob. Dist. (%) Profit
(!i, !�i) B IE SP B IE

( 4, 4) 65.51 32.59 90.12 0.68 0.52
( 4, 5 � 7) 12.61 19.09 4.52 0.57 0.58
( 4,� 8) 4.05 10.55 0.28 0.60 0.59

(5 � 7, 4) 12.61 19.09 4.52 1.51 1.26
(5 � 7, 5 � 7) 0.88 5.72 0.22 1.49 1.46
(5 � 7,� 8) 0.14 1.12 0.02 1.49 1.13

(� 8, 4) 4.05 10.55 0.28 1.62 1.58
(� 8, 5 � 7) 0.14 1.12 0.02 1.66 1.87
(� 8,� 8) 0.01 0.17 0.00 1.72 1.56

Notes: This table shows the probability of intervals of !-tuples for B, IE and SP . Here, and in tables 5,

6, and 7,the per-period profit is a probability weighted average, over the states underlying each !-tuple.

these !-tuples for each of B and IE as well as the average per-period profits earned by
the firms with !’s in the tuple. The distribution for SP is also provided for comparison.

Both B and IE are dynamic games in which the control that the firm uses to change
its stock of timber is its bid. Hence, to understand how di↵erences in information sets
shape the di↵erent paths taken through the state space, an examination of bidding is
required. The salient feature of the data in table 4 that the bids must explain is how
the IE information structure generates bids that keep the firms in higher ! tuples. The
lower !-tuples, the tuples in which both firms have !  4, are the least profitable tuples
in either equilibrium; indeed the maximal profits for a firm with !  4 is less than half
the minimal profits with ! � 4. What is evident from table 4 is that the additional
information available to firms in the IE equilibrium enables them to stay away from
states with !  4 with greater propensity than the firms in the B equilibrium are able
to. The fraction of periods with both firms with !  4 is 65.5% in B compared to
32.6% is IE, while the fraction of states with at least one firm with !  4 is just over
62% for IE compared to just over 82% for B.

In contrast the social planner spends more time in the ( 4, 4)-tuples than either
firms in B or IE, thereby generating a smaller cost of holding the timber already
procured. So IE firms maintain ! stocks that are greater, and in that sense even less
e�cient, than in the B equilibrium. Table 4 also reveals that firms in IE spend more
time in states that are asymmetric, in the sense of having one firm with a high ! and
one with a low !.

Table 5 contains the probability distributions over bids that underlie the distribu-
tion over the ! -tuples examined in table 4 together with average profits in those states.
Grey shaded cells indicate bids that are more frequent in IE than in B. Notice first
that, when both firms’ have !  4, bidding is more aggressive in the IE than in the
B equilibrium; there is both more participation in IE and a higher fraction of bids are
higher than the minimal bid in these states. This reinforces the impression that the
increased information created when moving from B to IE is not allowing the firms in
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IE generates more participation and lower prices - hard to reconcile w static
intuition

Transitions are changing, likely in response to increased competition on
specific states

Since the control is the bid, to understand this, need to look at bids
How does the information structure generate bids that keep bidders in higher
inventory states?
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Results: Shaded cells are bid-state pairs where
Prob(IE)>Prob(B)

Table 5: Bids by !-tuple for B and IE

Bids Profit
(!i, !�i) B IE B IE

? 0.5 1 1.5 2 ? 0.5 1 1.5 2
( 4, 4) 0.22 0.13 0.27 0.31 0.07 0.07 0.13 0.28 0.47 0.06 0.68 0.52
( 4, 5 � 7) 0.11 0.32 0.45 0.11 0.02 0.02 0.53 0.37 0.08 0.00 0.57 0.58
( 4,� 8) 0.08 0.58 0.29 0.04 0.02 0.00 0.88 0.12 0.00 0.00 0.60 0.59

(5 � 7, 4) 0.43 0.18 0.34 0.04 0.01 0.33 0.10 0.52 0.05 0.00 1.51 1.26
(5 � 7, 5 � 7) 0.37 0.50 0.09 0.02 0.01 0.40 0.59 0.01 0.00 0.00 1.49 1.46
(5 � 7,� 8) 0.39 0.53 0.06 0.01 0.01 0.11 0.89 0.00 0.00 0.00 1.49 1.13

(� 8, 4) 0.51 0.25 0.22 0.02 0.00 0.60 0.14 0.26 0.00 0.00 1.62 1.58
(� 8, 5 � 7) 0.53 0.39 0.06 0.01 0.00 0.84 0.16 0.00 0.00 0.00 1.66 1.87
(� 8,� 8) 0.61 0.36 0.03 0.00 0.00 0.47 0.53 0.00 0.00 0.00 1.72 1.56

Notes: This table shows bids by intervals of !-tuples for B and IE. ? indicates non-participation.

IE to better coordinate; more information actually intensifies competition when stocks
of timber are low. Relative to IE the firms in the B model are less certain about their
competitor’s states and this softens competition.

The opposite seems to be true when at least one of the firm’s has an ! greater than
eight, or both firms have an ! between five and seven. In these states participation in IE
is sometimes greater than in B but, conditional on bidding, the bids in IE are smaller.
The result is that the winning bid in IE is the minimal bid much more frequently. For
example, when both firms have an ! between five and seven the IE bidding patterns
are consistent with firms participating when their Fi draw is su�ciently low, and then
bidding the minimal amount. The result is that in virtually every case the winning
bid is the minimal bid. This essentially reduces the auction to a lottery. When both
firms have an ! between five and seven in the B equilibrium participation is somewhat
lower, but conditional on participating only about a quarter of the bids are more than
the minimal bid. A similar comparison holds when both firms have an ! greater than
eight. In the (� 8, 5 � 7) -tuple and the (� 8, 4) tuple the IE equilibrium has the
high ! firm typically sitting out the auction, deferring to the lower ! rival who most
often wins with the minimal bid. In contrast when the B equilibrium is at the tuple
(� 8, 5 � 7) the high ! firm bids in 47 % of the time (compared to only 16% of the
time in the IE equilibrium,) and 15% of those bids are greater than the minimal bid
(compared to 0% for the IE equilibrium).

So when at least one of the firms has an ! greater than eight, or both firms have an
! between five and seven, it seems that more information enables better co-ordination
of bids. The one couple of states in table 5 that we have not discussed is when one
firm has an ! less than or equal to four and the other has an ! between five and seven.
There is a sense in which this couple of states lies ”in-between” the low stock states
in which more information intensifies competition and the high stock states in which
more information facilitates coordination. In this state the high ! firm participates
more in the IE equilibrium (67% vs 57%), and 85% of the time that the high ! firm
participates in the IE equilibrium it bids more than the minimum bid (compared to
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Results: Shaded cells are bid-state pairs where
Prob(IE)>Prob(B)

Low inventory states

68% of the time in the B equilibrium). The low ! firm in the ( 4, 5 � 7) participates
more in the IE equilibrium, but bids less aggressively than it does in the B equilibrium.
The fact that the high ! firm bids more aggressively in the IE equilibrium but the low
! firm does not, explains part of the di↵erence between the probabilities of di↵erent
states between the IE and B model provided in table 4, as it underlies the fact that
the IE model typically generates disproportionate number of states where at least one
firms has a high ! stock.

Tables 6 and 7 examine the di↵erences in bids between the B and IE model in more
detail. Table 6 looks at bids in the low ! states and shows the rather dramatic increase
in aggressiveness that results from providing firms with the increased information in
the IE equilibrium. At state (0, 0) firms in IE participate 99% of the time (compared
to 88% in B) and when they participate 78% of the time they chose the maximal bid
(versus 28% in B). The di↵erences between the bids in IE and B are similar in state
(1,1). Even when there is some asymmetry in the states, as long both states are low the
increased information in IE causes the firm with a higher ! to bid more aggressively in
IE than in B. For example at (2,0), the firm with ! = 2 participates 95% of the time
in IE (versus 72% of the time in B) and the IE firm bids 1.5 or more 91% of the time
(versus 64% of the time in B).

Table 6: Competition in low !-tuples

Prob. Dist. (%) Bids Profit
(!i, !�i) B IE B IE B IE

? 0.5 1 1.5 2 ? 0.5 1 1.5 2
(0, 0) 3.17 0.50 0.12 0.07 0.12 0.41 0.28 0.01 0.00 0.09 0.12 0.78 -0.22 -0.48
(0, 1) 3.70 0.88 0.12 0.08 0.13 0.46 0.20 0.04 0.00 0.09 0.44 0.43 -0.17 -0.44
(0, 2) 4.91 1.48 0.11 0.09 0.17 0.49 0.15 0.05 0.08 0.05 0.60 0.23 -0.09 -0.31

(1, 0) 3.70 0.88 0.18 0.06 0.13 0.49 0.15 0.01 0.04 0.00 0.29 0.66 0.41 -0.08
(1, 1) 2.36 0.80 0.18 0.12 0.23 0.40 0.07 0.03 0.09 0.00 0.74 0.15 0.46 0.20

(2, 0) 4.91 1.48 0.28 0.07 0.19 0.41 0.05 0.05 0.10 0.00 0.86 0.00 1.01 0.66

Notes: This table shows the probability of selected !-tuples and bids by those !-tuples for B and IE.

Table 7 focuses on bidding behavior when states are asymmetric. The firm with
the larger stock has an ! = 7 but the pattern is representative of bidding in states in
which its ! 2 {5, 6, 7, 8, 9}. Relative to the B equilibrium the low ! firms in IE have a
higher propensity to bid and, when bidding, to bid the minimum bid. Moreover those
propensities increases as their state moves from 0 to 1 to 2. By contrast, at least for
the couples (7,0), (7,1), and (7,2), the high-! rival either does not participate or tends
to bid 1 (and so is likely to win if it does bid). As the low ! firm’s stock increases, the
high ! firm participates less. So the low ! firm is likely to win more often, and if it
does win, it wins with the minimal bid. This insures that both firms profits increase
as the low ! firm’s state increases.

In the IE equilibrium this pattern of play shifts as the low ! firm passes !=4.
Then the high ! firm (if it bids) moves its bids toward the minimal bid, so that by
the time the state (7,7) is reached each firm either does not participate or bids the
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Results: Shaded cells are bid-state pairs where
Prob(IE)>Prob(B)

Asymmetric inventory states

minimal amount (in about equal proportions). The behavior in the B equilibrium in
these cases is quite di↵erent. Participation and bids conditional on participation are
higher, making the relative profitability of those states (relative to the low ! states)
less profitable in the B than in the IE equilibrium.

Table 7: Bidding and participation in asymmetric !-tuples

Prob. Dist. (%) Bids Profit
(!i, !�i) B IE B IE B IE

? 0.5 1 1.5 2 ? 0.5 1 1.5 2
(0, 7) 1.49 2.36 0.05 0.23 0.61 0.09 0.03 0.01 0.33 0.62 0.03 0.00 0.22 0.02
(1, 7) 0.40 0.83 0.08 0.50 0.38 0.03 0.01 0.00 0.79 0.21 0.00 0.00 0.69 0.64
(2, 7) 0.35 0.89 0.14 0.64 0.18 0.02 0.01 0.00 1.00 0.00 0.00 0.00 1.06 1.07
(4, 7) 0.13 0.69 0.26 0.61 0.10 0.02 0.02 0.04 0.96 0.00 0.00 0.00 1.36 1.09

(7, 0) 1.49 2.36 0.46 0.10 0.41 0.03 0.01 0.26 0.00 0.74 0.00 0.00 1.55 1.17
(7, 1) 0.40 0.83 0.48 0.23 0.26 0.02 0.00 0.40 0.03 0.57 0.00 0.00 1.57 1.21
(7, 2) 0.35 0.89 0.48 0.29 0.21 0.02 0.00 0.50 0.11 0.39 0.00 0.00 1.57 1.39
(7, 4) 0.13 0.69 0.46 0.43 0.09 0.02 0.01 0.76 0.24 0.00 0.00 0.00 1.59 1.84
(7, 7) 0.02 0.26 0.45 0.47 0.06 0.01 0.00 0.47 0.53 0.00 0.00 0.00 1.61 1.49

Notes: This table shows the probability of selected !-tuples and bids by those !-tuples for B and IE.

Tables 6 and 7 are central to understanding how increasing a firm’s information
about its competitor changes the path of play. Providing more information about a
competitor increases competition at low ! states which reduces profits in those states.
In a static game a fall in profits that accompanies the increase in information would
decrease participation. However in this dynamic game participation is higher when
there is more information. This because firms respond to the possibility of higher
future profits from the increase in its stock of timber if it wins the auction. Moreover
if a firm does win the auction and proceeds to a higher ! state, it will participate
less often in subsequent auctions. Compared to the B equilibrium, firms in the IE
equilibrium firms are better able to asses when their competitor has a large stock. So a
firm that loses the initial auction(s) is more certain of the extent to which the winning
firm’s stock increases and knows that when the increase is large its competitor is less
likely to participate in the auction. As a result the firm with a low ! knows that it
is likely to win subsequent auctions with a minimal bid and bids accordingly. This
ameliorates the consequences of the initial auction losses, and supports an equilibrium
where both firms are at high ! (and hence highly profitable) states more often.

To summarize, in a static model the intensified competition at low ! states caused
by being more certain that your competitor is at a low ! state would induce firms to
stay out of the market. Here, participation increases because the static incentive is
dominated by; (i) the dynamic incentive to move to a more profitable, i.e. a higher,
! state, and (ii) the impact of the increased information on bidding thereafter, and
through those bids, on the profits of the firm that does not initially pull ahead.

For a more formal look at what underlies the dynamic incentives consider the in-
terim value function for b 2 B, (that is, equation 3), reproduced here as

W (b|Ji) = ⇡e(b|Ji)+

29
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Results

IE generates more participation and lower prices - hard to reconcile w static
intuition

Transitions are changing, likely in response to increased competition on
specific states

Since the control is the bid, to understand this, need to look at bids
How does the information structure generate bids that keep bidders in higher
inventory states?

Precision of information about states in IE allows for more targeted bidding
strategies

Vigorous competition in low inventory states
Use fixed costs to reduce auction to lottery in symmetric high inventory states
Asymmetric bidding in the asymmetric states (“tough love” by the high type)
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Results: How much of a role is dynamics taking?

Dynamics is about the impact of the continuation value

Compute D as the difference between the continuation value of optimal
strategy at a state and the continuation value from doing what is statically
optimal at that state.
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Results: Impact of dynamic incentives
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Figure 1: EJi,Fi
[D(b⇤, Ji, Fi)|!i, !�i] for di↵erent !�i sets. The solid line is IE. The dashed

line is B. Values are a probability weighted average where the probability is the frequency
with which each state is hit during a 5 million iteration simulation
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Results: Impact of dynamic incentives
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Conclusion

IE generates more participation and lower prices - hard to reconcile w static
intuition

Transitions are changing, in response to increased competition on specific
states

Precision of information about states in IE allows for more targeted bidding
strategies

Commitment crucial to IE having any impact

Welfare intuitions from static intuition fail

Developed a computational framework that allows these issues to be explored
in a auction setting (non-capital accumulation game)

Extended REBE to check for boundary consistency
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