"A Computational Framework for Analyzing Dynamic Procurement Auctions: The Market Impact of Information Sharing"

> John Asker (UCLA), Chaim Fershtman (Tel-Aviv), Jihye Jeon (BU), Ariel Pakes (Harvard)

> > Apr 25, 2019 Princeton

- Research Question:
 - What is the impact on competition of information sharing among bidders in a series of interlinked auctions?
 - How might dynamic consideration shape thinking?
 - How to formulate a modeling environment that can address questions like these, that also allows for substantive dynamics
- Approach:
 - Computational model new theory and analysis.
- Why is this interesting?
 - Information sharing is somewhat neglected area of competition policy, recently relevant in several merger and conduct settings
 - Common applied mechanism design concern
 - Computational oligopoly models have tended to struggle with asymmetric information

・ロン ・四 と ・ ヨン ・ ヨン

The setting: Infinitely repeated game, stage game looks like:

The setting: Infinitely repeated game, stage game looks like:

• US: "The sharing of information relating to price, cost, output, customers, or strategic planning is more likely to be of competitive concern than the sharing of less competitively sensitive information."

- FTC/DOJ Collaboration Guidelines

イロン イヨン イヨン イヨン

- Rule of reason approach in conduct cases. Cases are pretty rare in modern era. Issues have arisen in mergers: falls under broad rubric of coordinated effects.
- EU: Sharing of information relating to future price is a "restriction of competition by object". This may include non-price but strategically relevant information (See *Dole Foods*).
 - Conduct cases are more common in modern era.

- Information sharing increases the precision with which a firm knows its rivals' states
 - For some states, this intensifies competition (e.g. when both firms have low inventory)
 - Firms increase participation to avoid these states
 - Thus, participation increases, and quantity increases.
 - But prices drop, as more time in spent in states where competition is less intense.
- The "price low bad, price high good" intuition for assessing competition between bidders seems poorly suited to this environment.

・ロン ・四 と ・ ヨ と ・ ヨ と

- Dynamic oligopoly games
 - Doraszelski and Pakes (2007)
 - Saini (2013), Jeziorski and Kasnokutskaya (2016), Jofre-Bonet and Pesendorfer (2003)
 - Fershtman and Pakes (2012)
- Auctions
 - Maskin and Riley (2000), Athey, Levin and Seira (2011)
- Bid rigging
 - Baldwin, Marshall and Richard (1997), Marshall and Marx (2013)
- Information sharing
 - Gal-Or (1985,1986), Shapiro (1986), Kuhn and Vives (1995)

Model set-up

- Equilibrium
- Adding information sharing
- Computation and parametrization
- Results
- Conclusion

A n stu: auc anr - Fl	ew mpage tion is nounced PSB	Bid (or not)	Bidders learn who participated, who won, and the winning bid	Loggers engage in harvest (stochastic and private info)	Loggers' stock of trees is updated (private info)
L					,
Two loggers each have a stock of trees that can be harvested (private info)	Learn bidder- specific fixed cost to participate	Winner realized	Winner learns th timber i the lot ti was wor (stochas and priv info)	ne n hat tic rate	Loggers sell harvest to competitive market

• Inventory of timber is ω_{it} , will usually drop the t subscript

A new stumpa auction annour - FPSB	ge is nced Bi	d (or not)	Bidders learn who participated, who won, and the winning bid	Loggers engage in harvest (stochastic and private info)		Loggers' stock of trees is updated (private info)
Two loggers each have a stock of trees that can be harvested (private	Learn bidder- specific fixed cost to participate	 Winner realized	Winner learns the timber in the lot that was won (stochastic and private	<u> </u>	Loggers sell harvest to competitive market	J

- Inventory of timber is ω_{it}
- Fixed cost is $F_{it} \sim U[F_I, F_h]$, i.i.d. across bidders (private info)

	A new stumpage auction is announced - FPSB	Bid (or not)	Bidders learn who participated, who won, and the winning bid	Loggers engage in harvest (stochastic and private info)	Loggers' stock of trees is updated (private info)
Two loggers	Learn	Winner	Winner		Loggers sell
each have a	bidder-	realized	learns the		harvest to
stock of	specific		timber in		competitive
trees that	fixed cost to		the lot that		market
can be	participate		was won		
harvested			(stochastic		
(private			and private		
info)			info)		

- Inventory of timber is ω_{it}
- Fixed cost is F_{it}
- Bid $\in \{ \varnothing, \underline{b}, ..., 3\underline{b}, ...\overline{b} \}$

	A new stumpage auction is announced - FPSB	1	Bid (or not)		Bidders lea who participate who won, a the winnin bid	urn d, and g	Loggers engage in harvest (stochastic and private info)		Loggers' stock of trees is updated (private info)
Two loggers each have a stock of trees that can be harvested (private info)	L b sı fi p	earn idder- pecific xed cost to articipate	r	Winner ealized		Winner learns the timber in the lot that was won (stochastic and private info)		Loggers sell harvest to competitive market	

- Inventory of timber is ω_{it} ; Fixed cost is F_{it} ; Bid $\in \{\emptyset, \underline{b}, ..., 3\underline{b}, ..., \overline{b}\}$
- $I_{i,t} = (J_{i,t}, F_{i,t}), J_{i,t} = (\omega_{i,t}, \xi_t), \xi_t^n \equiv [i_t^w, b_t^*, p_t]$ or, if information exchange, $\xi_t^n \equiv [i_t^w, \omega_t]$

メロト メポト メヨト メヨト

- Inventory of timber is ω_{it} ; Fixed cost is F_{it} ; Bid $\in \{\emptyset, \underline{b}, ..., 3\underline{b}, ..., \overline{b}\}$
- $I_{i,t} = (J_{i,t}, F_{i,t}), J_{i,t} = (\omega_{i,t}, \xi_t), \xi_t^n \equiv [i_t^w, b_t^*, p_t]$ or, if information exchange, $\xi_t^n \equiv [i_t^w, \omega_t]$
- Timber in lot is given by θ + η_t where θ is the average amount and η_t is an i.i.d discrete random variable.

・ロン ・四 と ・ ヨ と ・ ヨ と

	A new stumpage auction is announced - FPSB	Bid (or not)	Bidders learn who participated, who won, and the winning bid	Loggers engage in harvest (stochastic and private info)	Loggers' stock of trees is updated (private info)
				1	
Two loggers each have a stock of trees that can be harvested (private info)	Learn bidder- specific fixed cost to participate	realized	Winner learns the timber in the lot that was won (stochastic and private info)		Loggers sell harvest to competitive market

- Inventory of timber is ω_{it} ; Fixed cost is F_{it} ; Bid $\in \{\emptyset, \underline{b}, ..., 3\underline{b}, ..., \overline{b}\}$
- $I_{i,t} = (J_{i,t}, F_{i,t}), J_{i,t} = (\omega_{i,t}, \xi_t), \xi_t^n \equiv [i_t^w, b_t^*, p_t]$ or, if information exchange, $\xi_t^n \equiv [i_t^w, \omega_t]$
- Timber in lot is given by $\theta + \eta_t$
- Harvest is given by $e + \epsilon_{i,t}$ where $\epsilon_{i,t}$ is a discrete random variable

	A new stumpage auction is announced - FPSB	Bid (or not)	Bidders learn who participated, who won, and the winning bid	Loggers engage in harvest (stochastic and private info)	Loggers' stock of trees is updated (private info)
[
Two loggers each have a stock of trees that can be harvested (private info)	Learn bidder- specific fixed cost tt participate	, Winner realized	Winner learns the timber in the lot that was won (stochastic and private info)		Loggers sell harvest to competitive market

- Inventory of timber is ω_{it} ; Fixed cost is F_{it} ; Bid $\in \{\emptyset, \underline{b}, ..., 3\underline{b}, ..., \overline{b}\}$
- $I_{i,t} = (J_{i,t}, F_{i,t}), J_{i,t} = (\omega_{i,t}, \xi_t), \xi_t^n \equiv [i_t^w, b_t^*, p_t]$ or, if information exchange, $\xi_t^n \equiv [i_t^w, \omega_t]$
- Timber in lot is given by $\theta + \eta_t$
- Harvest is given by $e + \epsilon_{i,t}$
- Each unit of harvested ω sells for a price of 1

・ロン ・四 と ・ ヨン ・ ヨン

- State space consists of pay-off relevant and informationally relevant variables not full history
 - Pay-off relevant: current profits depend on it and it is not a control
 - Informationally relevant: even if no other player conditions on the variable for play, it is profit increased by conditioning on it (i.e. revealing about private states in some way)
- Every T periods all information revealed to everyone. Needed for current existence proofs and computational feasibility (finite state space).
- $\bullet\,$ There is a discount factor, $\beta\,$

Model set-up, dynamic system

$$V(J_i, F_i) = \max\left\{W(\emptyset|J_i), \max_{b \in \mathcal{B}}[W(b|J_i) - F_i]\right\}$$
(1)

Letting β be the discount factor, the firm's expectation of current period revenue (which excludes F_i) is

$$\pi^{e}(b|J_{i}) = \sum_{\epsilon_{i},\eta} \left[p^{w}(b|J_{i}) \left(\min\{\omega_{i}+\theta+\eta, e+\epsilon_{i}\}-b \right) + \left[1-p^{w}(b|J_{i})\right] \min\{\omega_{i}, e+\epsilon_{i}\} \right] p(a)$$
(2)

It follows that, for $b \in \mathcal{B}$,

$$W(b|J_i) = \pi^e(b|J_i) +$$
(3)

$$p^{w}(b|J_{i})\beta \sum_{\epsilon_{i},\eta,\xi'F_{i}'} \left(\omega'(\omega,\eta,\epsilon_{i}),\xi',F_{i}'\right)p(\xi'|\xi,\omega_{i},b,i=i_{w})p(F_{i}')p(\eta)p(\epsilon_{i})$$
$$+(1-p^{w}(b|J_{i}))\beta \sum_{\epsilon_{i},\xi',F_{i}'} V\left(\omega'(\omega,\epsilon_{i}),\xi',F_{i}'\right)p(\xi'|\xi,\omega_{i},b,i\neq i_{w})p(F_{i}')p(\epsilon_{i})$$

Model set-up

A new stumps auction annous	age 1 is nced	d ()	Bidders learn who participated, who won, and the winning	Loggers engage in harvest (stochastic and private	Loggers' stock of trees is updated (private info)
- FF3D	Di	a (or not)	biu	1110)	1110)
Two loggers each have a stock of trees that can be harvested (private info)	Learn bidder- specific fixed cost to participate	Winner realized	Winner learns the timber in the lot that was won (stochastic and private info)		Loggers sell harvest to competitive market

メロト メロト メヨト メヨト

Model set-up, dynamic system

$$V(J_i, F_i) = \max\left\{W(\emptyset|J_i), \max_{b \in \mathcal{B}}[W(b|J_i) - F_i]\right\}$$
(4)

Letting β be the discount factor, the firm's expectation of current period revenue (which excludes F_i) is

$$\pi^{e}(b|J_{i}) = \sum_{\epsilon_{i},\eta} \left[p^{w}(b|J_{i}) \left(\min\{\omega_{i}+\theta+\eta, e+\epsilon_{i}\}-b \right) + \left[1-p^{w}(b|J_{i})\right] \min\{\omega_{i}, e+\epsilon_{i}\} \right] p(a)$$
(5)

It follows that, for $b \in \mathcal{B}$,

$$W(b|J_i) = \pi^e(b|J_i) + \tag{6}$$

$$p^{w}(b|J_{i})\beta \sum_{\epsilon_{i},\eta,\xi'F'_{i}} \left(\omega'(\omega,\eta,\epsilon_{i}),\xi',F'_{i}\right)p(\xi'|\xi,\omega_{i},b,i=i_{w})p(F'_{i})p(\eta)p(\epsilon_{i})$$
$$+(1-p^{w}(b|J_{i}))\beta \sum_{\epsilon_{i},\xi',F'_{i}} V\left(\omega'(\omega,\epsilon_{i}),\xi',F'_{i}\right)p(\xi'|\xi,\omega_{i},b,i\neq i_{w})p(F'_{i})p(\epsilon_{i})$$

Model set-up

Equilibrium

- Adding information sharing
- Computation and parametrization
- Results
- Conclusion

Equlibrium, REBE

Equlibrium, REBE

Definition of a REBE:

A restricted experience based equilibria consists of the following three objects.

- $\textcircled{O} A set \mathcal{R} that is a subset of the state space$
- **②** Bidding and participation strategies, $b^*(J_i, F_i)$
- A set of numbers W ≡ {W^{*}(b|J_i)_{b∈B∪Ø}} representing the firm's perceptions of the expected discounted value of bid b

Equilibrium, REBE

Definition of a REBE:

A restricted experience based equilibria consists of the following three objects.

- A set \mathcal{R} that is a subset of the state space
- **2** Bidding and participation strategies, $b^*(J_i, F_i)$
- A set of numbers W ≡ {W^{*}(b|J_i)_{b∈B∪Ø}} representing the firm's perceptions of the expected discounted value of bid b

For these objects to define a REBE they must satisfy the following three conditions.

C1: \mathcal{R} is a recurrent class. That is, with probability one, any subgame starting from an $s_0 \in \mathcal{R}$ will generate sample paths that are within \mathcal{R} forever.

・ロン ・四 と ・ ヨ と ・ ヨ と

Equilibrium, REBE

Definition of a REBE:

A restricted experience based equilibria consists of the following three objects.

- A set \mathcal{R} that is a subset of the state space
- **2** Bidding and participation strategies, $b^*(J_i, F_i)$
- A set of numbers W ≡ {W^{*}(b|J_i)_{b∈B∪Ø}} representing the firm's perceptions of the expected discounted value of bid b

For these objects to define a REBE they must satisfy the following three conditions.

- C1: \mathcal{R} is a recurrent class.
- **C2:** Optimality of strategies. Conditional on $W \equiv \{W * (b|J_i)_{b \in \mathcal{B} \cup \emptyset}\}$, the strategies are optimal. That is

$$b^*(J_i,F_i) = rg\max_{b\in\mathcal{B}\cuparnothing} \left[W^*(b|J_i) - \{b
eq arnothing\}F_i
ight].$$

イロン イ団と イヨン イヨン

Equilibrium, REBE

Definition of a REBE:

A restricted experience based equilibria consists of the following three objects.

- **②** Bidding and participation strategies, $b^*(J_i, F_i)$
- A set of numbers W ≡ {W^{*}(b|J_i)_{b∈B∪Ø}} representing the firm's perceptions of the expected discounted value of bid b

For these objects to define a REBE they must satisfy the following three conditions.

- C1: \mathcal{R} is a recurrent class.
- C2: Optimality of strategies.
- **C3:** Consistency of values on \mathcal{R} . Consistency requires that the perception of discounted values, generated by every possible choice at every J_i that is a component of an $s \in \mathcal{R}$ equals the expected discounted value of returns generated by that choice from that J_i ; where expectations are taken using the empirical distribution of outcomes from that J_i .

Equilibrium, relationship to other equilibrium notions, issues

"In an self-confirming equilibrium, each players strategy is a best response to his beliefs about the play of his opponents, and each player's beliefs are correct along the equilibrium path of play"

• Substantive difference between REBE and SCE is that REBE requires beliefs about non-equilibrium path play that keeps you in the recurrent class to be consistent.

Equilibrium, relationship to other equilibrium notions, issues

"In an self-confirming equilibrium, each players strategy is a best response to his beliefs about the play of his opponents, and each player's beliefs are correct along the equilibrium path of play"

• Substantive difference between REBE and SCE is that REBE requires beliefs about non-equilibrium path play that keeps you in the recurrent class to be consistent.

- Return from non-optimal play at boundary points (i.e. doing something that takes us outside recurrent class) need not be consistent.
- This is a source of multiplicity and potentially problematic equilibrium selection if computation poorly initiated

・ロン ・四 と ・ ヨ と ・ ヨ と

Boundary Consistency: the perceived value of off-equilibrium-path play from a boundary point \geq the expected discounted value of profits from that point when all agents use their equilibrium policies

• • • • • • • • • • • • •

C4:Boundary Consistency.

Let $\pi_i(b^*, s, F) \equiv \pi(b_i^*(J_i, F_i), b_{-i}^*(F_{-i}, J_{-i}), F_i, J_i)$ and $\pi_i(b, b_{-i}^*, s, F) \equiv \pi(b, b_{-i}^*(F_{-i}, J_{-i}), F_i, J_i)$. Then our condition is $\forall (b, J_i)$ component of $(b, s) \in B$ and for every F_i ,

$$W(b^*|I_i) - \{b^*(J_i,F_i)
eq arnothing\}F_i \geq$$

$$\sum_{J_{-i},F_{-i}} \left[\pi_i(b,b^*_{-i},s,F_i)) + \sum_{\gamma=1}^{\infty} \beta^{\gamma} \sum_{s_{\gamma},F_{\gamma}} \pi_i(b^*,F_{\gamma},s_{\gamma}) p(s_{\gamma}|s_{\gamma-1},b^*,F_{\gamma}) p(F_{\gamma}) \right] p(F_{-i}) \mu^{E_{j}}$$

where $p(s_{\gamma}|s_{\gamma-1}, b^*, F_{\gamma})$ is the probability of reaching state s_{γ} at time γ given that at time $\gamma - 1$ the state is $s_{\gamma-1}$, participation fees are F_{γ} and the players play the equilibrium strategies b^* .

メロト メポト メヨト メヨト

- Model set-up
- Equilibrium

Adding information sharing

- Computation and parametrization
- Results
- Conclusion

- Baseline (B) is above model with T=4
- Information Exchange (IE) treatment is above model with T=1 (learn ω 's every period)

	A new stumpage auction is announced - FPSB	Bid (or not)	Bidders learn who participated, who won, and the winning bid		Loggers engage in harvest (stochastic and private info)		Loggers' stock of trees is updated (private info)
Two loggers each have a stock of trees that can be harvested (private info)	Learn bidder- specific fixed cost to participate	Winner realized	Winn learn timb the le was v (stoc and j info)	ner is the er in ot that won hastic private		Loggers sell harvest to competitive market	

- Inventory of timber is ω_{it} ; Fixed cost is F_{it} ; Bid $\in \{\emptyset, \underline{b}, ..., 3\underline{b}, ..., \overline{b}\}$
- $I_{i,t} = (J_{i,t}, F_{i,t}), J_{i,t} = (\omega_{i,t}, \xi_t), \xi_t^n \equiv [i_t^w, b_t^*, p_t]$ or, if information exchange, $\xi_t^n \equiv [i_t^w, \omega_t]$

メロト メポト メヨト メヨト

Adding information sharing: Voluntary IE (no commitment)

- Baseline (B) is above model with T=4
- Information Exchange (IE) treatment is above model with T=1 (learn ω's every period)
- Voluntary IE (VIE) introduces a choice to reveal information for next 4 periods. Choice must be unanimous. Choice made at same time as bid. Bid is a b and a 'yes/no'
 - Simplest way to put in a endogenous switch between B and IE

・ロン ・四 と ・ ヨ と ・ ヨ と

- Model set-up
- Equilibrium
- Adding information sharing

• Computation and parametrization

- Results
- Conclusion

- Computation is done via a reinforcement learning algorithm with v. high starting values
- Testing for convergence to REBE is done by comparing the $\mathcal{W} \equiv \{W^*(b|J_i)_{b \in \mathcal{B} \cup \varnothing}\}$ in memory, to the estimated analog from simulating a long path holding strategies constant. Details in the paper.
- Testing for boundary consistency
 - Simulate to find boundary points (see where each possible action at a point in the recurrent class go to)
 - Take boundary points, for each action compare $\mathcal{W} \equiv \{W^*(b|J_i)_{b \in \mathcal{B} \cup \emptyset}\}$ to the estimated continuation value generated by simulating many iterations that each travel outside the recurrent class for a long time (stop if return).
 - Details in the paper

・ロン ・四 と ・ ヨ と ・ ヨ と

		B	IE	VIE
Parameters that vary:				
Distribution of fixed cost of participation Mean timber in a lot Periods between ω revelation Discount factor	$F_i \\ \theta \\ T \\ \beta$	$U[0,1] \\ 3.5 \\ 4 \\ 0.9$	$U[0,1] \\ 3.5 \\ 1 \\ 0.9$	$\begin{array}{c} {\rm U}[0,1]\\ 3.5\\ \{1,4\}\\ 0.9\end{array}$
Other parameter values:				
Mean harvest capacity	e		2	
Disturbance around θ	η		$\{-0.5, 0.5\}$	}
Probability on η realizations			$\{0.5, 0.5\}$	
Disturbance around e	ϵ		$\{-1,0,1\}$	
Probability on ϵ realizations		$\{0.3$	33, 0.33, 0	.33}
Bidding grid		{(0.5, 1, 1.5, 2	2}
Number of firms/bidders			2	
Retail price of a unit of timber			1	

Size of recurrent class: *B IE VIE* 325.843 2.089 328.688

Number of all states visited during computation:

 $\begin{array}{cccc} B & IE & VIE \\ 7,495,307 & 2,724 & 7,908,122 \end{array}$

Computation times per 5 million iterations (in hours): BIEVIE1:381:061:56Computation times for testing for a REBE (5 million iterations, in hours): BIEVIE1:431:092:00Computation times for testing for boundary consistency (100,000 iterations, in hours): BIEVIE75:413:030:16

Total time = about a week for B and VIE, and half a day for IE. We used matlab on a 3.7GHz/16Gb RAM windows desktop.

- Model set-up
- Equilibrium
- Adding information sharing
- Computation and parametrization
- Results
- Conclusion

	B	IE	VIE	SP
Avg. bid	1.09	0.94	1.04	-
Avg. winning bid (revenue for the auctioneer)	1.11	0.98	1.07	-
Avg. winning bid conditional on ≥ 1 firm participating	1.16	0.98	1.12	-
Avg. winning bid conditional on 1 firm participating	1.06	0.67	0.99	-
Avg. winning bid conditional on 2 firms participating	1.23	1.16	1.20	-
Avg. $\#$ of participants	1.52	1.63	1.52	1
Avg. # of participants, conditional on ≥ 1 firm participating	1.59	1.63	1.59	1
Avg. participation rate	0.76	0.81	0.76	0.50
% of periods with no participation	4.39	0.15	3.85	0.004
Avg. total revenue	3.35	3.49	3.37	3.50
Avg. profit	0.81	0.87	0.84	-
% of periods in which a firm with the lowest omega wins	66.37	60.80	65.32	85.96
conditional on ≥ 1 firm participating Average total social surplus	2.73	2.72	2.74	3.10

Notes: Here, and in tables 4, 5, 6, and 7, the per-period profit is defined as $\pi(\omega_i) - \mathbb{I}_{\{i=win\}}b_i - \{b_i \neq \emptyset\}F_i = \min \{\omega_i + \mathbb{I}_{\{i=win\}}(\theta + \eta), e + \epsilon_i\} - \mathbb{I}_{\{i=win\}}b_i - \{b_i \neq \emptyset\}F_i$. Total revenue is defined as $\sum_i \pi(\omega_i) = \sum_i \min \{\omega_i + \mathbb{I}_{\{i=win\}}(\theta + \eta), e + \epsilon_i\}$. Total social surplus is defined as $\sum_i \{\pi(\omega_i) - \{b_i \neq \emptyset\}F_i\}$. Averages are taken over periods. The statistics are computed based on a 5 million iteration simulation of each model.

Results: Judging competition, price vs participation

	В	IE	VIE	SP
Avg. bid	1.09	0.94	1.04	-
Avg. winning bid (revenue for the auctioneer)	1.11	0.98	1.07	-
Avg. winning bid conditional on ≥ 1 firm participating	1.16	0.98	1.12	-
Avg. winning bid conditional on 1 firm participating	1.06	0.67	0.99	-
Avg. winning bid conditional on 2 firms participating	1.23	1.16	1.20	-
Avg. $\#$ of participants	1.52	1.63	1.52	1
Avg. # of participants, conditional on ≥ 1 firm participating	1.59	1.63	1.59	1
Avg. participation rate	0.76	0.81	0.76	0.50
% of periods with no participation	4.39	0.15	3.85	0.004
Avg. total revenue	3.35	3.49	3.37	3.50
Avg. profit	0.81	0.87	0.84	-
% of periods in which a firm with the lowest omega wins	66.37	60.80	65.32	85.96
conditional on ≥ 1 firm participating Average total social surplus	2.73	2.72	2.74	3.10

Notes: Here, and in tables 4, 5, 6, and 7, the per-period profit is defined as $\pi(\omega_i) - \mathbb{I}_{\{i=win\}}b_i - \{b_i \neq \emptyset\}F_i = \min \{\omega_i + \mathbb{I}_{\{i=win\}}(\theta + \eta), e + \epsilon_i\} - \mathbb{I}_{\{i=win\}}b_i - \{b_i \neq \emptyset\}F_i$. Total revenue is defined as $\sum_i \pi(\omega_i) = \sum_i \min \{\omega_i + \mathbb{I}_{\{i=win\}}(\theta + \eta), e + \epsilon_i\}$. Total social surplus is defined as $\sum_i \{\pi(\omega_i) - \{b_i \neq \emptyset\}F_i\}$. Averages are taken over periods. The statistics are computed based on a 5 million iteration simulation of each model.

• IE generates more participation and lower prices - hard to reconcile w static intuition

	Pro	b. Dist.	(%)	Pro	ofit
(ω_i, ω_{-i})	B	IE	SP	B	IE
$(\leq 4, \leq 4)$	65.51	32.59	90.12	0.68	0.52
$(\le 4, 5-7)$	12.61	19.09	4.52	0.57	0.58
$(\leq 4, \geq 8)$	4.05	10.55	0.28	0.60	0.59
$(5-7, \le 4)$	12.61	19.09	4.52	1.51	1.26
(5-7, 5-7)	0.88	5.72	0.22	1.49	1.46
$(5-7, \ge 8)$	0.14	1.12	0.02	1.49	1.13
$(\geq 8, \leq 4)$	4.05	10.55	0.28	1.62	1.58
$(\geq 8, 5-7)$	0.14	1.12	0.02	1.66	1.87
$(\geq 8, \geq 8)$	0.01	0.17	0.00	1.72	1.56

メロト メポト メヨト メヨ

	Pro	b. Dist.	Profit		
(ω_i, ω_{-i})	B	IE	SP	B	IE
$(\leq 4, \leq 4)$	65.51	32.59	90.12	0.68	0.52
$(\le 4, 5-7)$	12.61	19.09	4.52	0.57	0.58
$(\le 4, \ge 8)$	4.05	10.55	0.28	0.60	0.59
$(5-7, \le 4)$	12.61	19.09	4.52	1.51	1.26
(5-7, 5-7)	0.88	5.72	0.22	1.49	1.46
$(5-7, \ge 8)$	0.14	1.12	0.02	1.49	1.13
$(\geq 8, \leq 4)$	4.05	10.55	0.28	1.62	1.58
$(\geq 8, 5-7)$	0.14	1.12	0.02	1.66	1.87
$(\geq 8, \geq 8)$	0.01	0.17	0.00	1.72	1.56

メロト メポト メヨト メヨ

- IE generates more participation and lower prices hard to reconcile w static intuition
- Transitions are changing, likely in response to increased competition on specific states
 - Since the control is the bid, to understand this, need to look at bids
 - How does the information structure generate bids that keep bidders in higher inventory states?

Results: Shaded cells are bid-state pairs where Prob(IE)>Prob(B)

	Bids									
(ω_i, ω_{-i})			B					IE		
	Ø	0.5	1	1.5	2	Ø	0.5	1	1.5	2
$(\leq 4, \leq 4)$	0.22	0.13	0.27	0.31	0.07	0.07	0.13	0.28	0.47	0.06
$(\leq 4, 5-7)$	0.11	0.32	0.45	0.11	0.02	0.02	0.53	0.37	0.08	0.00
$(\le 4, \ge 8)$	0.08	0.58	0.29	0.04	0.02	0.00	0.88	0.12	0.00	0.00
$(5-7, \le 4)$	0.43	0.18	0.34	0.04	0.01	0.33	0.10	0.52	0.05	0.00
(5-7, 5-7)	0.37	0.50	0.09	0.02	0.01	0.40	0.59	0.01	0.00	0.00
$(5-7, \ge 8)$	0.39	0.53	0.06	0.01	0.01	0.11	0.89	0.00	0.00	0.00
$(\geq 8, \leq 4)$	0.51	0.25	0.22	0.02	0.00	0.60	0.14	0.26	0.00	0.00
$(\geq 8, 5-7)$	0.53	0.39	0.06	0.01	0.00	0.84	0.16	0.00	0.00	0.00
$(\geq 8, \geq 8)$	0.61	0.36	0.03	0.00	0.00	0.47	0.53	0.00	0.00	0.00

Results: Shaded cells are bid-state pairs where Prob(IE)>Prob(B)

	Prob.	Dist. (%)	Bids									
(ω_i, ω_{-i})	B	IE			B					IE		
			Ø	0.5	1	1.5	2	ø	0.5	1	1.5	2
(0,0)	3.17	0.50	0.12	0.07	0.12	0.41	0.28	0.01	0.00	0.09	0.12	0.78
(0, 1)	3.70	0.88	0.12	0.08	0.13	0.46	0.20	0.04	0.00	0.09	0.44	0.43
(0, 2)	4.91	1.48	0.11	0.09	0.17	0.49	0.15	0.05	0.08	0.05	0.60	0.23
(1, 0)	3.70	0.88	0.18	0.06	0.13	0.49	0.15	0.01	0.04	0.00	0.29	0.66
(1, 1)	2.36	0.80	0.18	0.12	0.23	0.40	0.07	0.03	0.09	0.00	0.74	0.15
(2, 0)	4.91	1.48	0.28	0.07	0.19	0.41	0.05	0.05	0.10	0.00	0.86	0.00

Low inventory states

Results: Shaded cells are bid-state pairs where Prob(IE)>Prob(B)

Asymmetric inventory states

	Prob.	Dist. (%)		Bids								
(ω_i, ω_{-i})	B	IE			B					IE		
			Ø	0.5	1	1.5	2	Ø	0.5	1	1.5	2
(0,7)	1.49	2.36	0.05	0.23	0.61	0.09	0.03	0.01	0.33	0.62	0.03	0.00
(1, 7)	0.40	0.83	0.08	0.50	0.38	0.03	0.01	0.00	0.79	0.21	0.00	0.00
(2,7)	0.35	0.89	0.14	0.64	0.18	0.02	0.01	0.00	1.00	0.00	0.00	0.00
(4, 7)	0.13	0.69	0.26	0.61	0.10	0.02	0.02	0.04	0.96	0.00	0.00	0.00
(7, 0)	1.49	2.36	0.46	0.10	0.41	0.03	0.01	0.26	0.00	0.74	0.00	0.00
(7, 1)	0.40	0.83	0.48	0.23	0.26	0.02	0.00	0.40	0.03	0.57	0.00	0.00
(7, 2)	0.35	0.89	0.48	0.29	0.21	0.02	0.00	0.50	0.11	0.39	0.00	0.00
(7, 4)	0.13	0.69	0.46	0.43	0.09	0.02	0.01	0.76	0.24	0.00	0.00	0.00
(7,7)	0.02	0.26	0.45	0.47	0.06	0.01	0.00	0.47	0.53	0.00	0.00	0.00

- IE generates more participation and lower prices hard to reconcile w static intuition
- Transitions are changing, likely in response to increased competition on specific states
 - Since the control is the bid, to understand this, need to look at bids
 - How does the information structure generate bids that keep bidders in higher inventory states?
- Precision of information about states in IE allows for more targeted bidding strategies
 - Vigorous competition in low inventory states
 - Use fixed costs to reduce auction to lottery in symmetric high inventory states
 - Asymmetric bidding in the asymmetric states ("tough love" by the high type)

・ロン ・四 と ・ ヨ と ・ ヨ と

- Dynamics is about the impact of the continuation value
- Compute *D* as the difference between the continuation value of optimal strategy at a state and the continuation value from doing what is statically optimal at that state.

(日) (同) (日) (日)

Results: Impact of dynamic incentives

Solid is IE, dash is B

Results: Impact of dynamic incentives

Solid is IE, dash is B

イロト イポト イヨト イヨ

- IE generates more participation and lower prices hard to reconcile w static intuition
- Transitions are changing, in response to increased competition on specific states
- Precision of information about states in IE allows for more targeted bidding strategies
- Commitment crucial to IE having any impact
- Welfare intuitions from static intuition fail
- Developed a computational framework that allows these issues to be explored in a auction setting (non-capital accumulation game)
- Extended REBE to check for boundary consistency