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1 Introduction

It is well documented that firms differ in productivity within even narrowly defined in-

dustries.1 Moreover, across countries, the extent of this dispersion varies considerably,

particularly when comparing countries at different stages of economic development.

Dispersion is also observed in the marginal revenue products of inputs, particularly

capital. Viewed through a standard static model of production and demand, variation

in marginal products across firms suggests the existence of frictions that prevent the

efficient allocation of resources in an industry, or an economy at large.

Mirroring this observation, quantitative studies find that reallocation of capital

to more productive uses has important implications for aggregate productivity and

welfare, within industries, countries, and over time (see, as examples, Olley and Pakes

(1996), Hsieh and Klenow (2009), Bartelsman, Haltiwanger, and Scarpetta (2013), and

Collard-Wexler and De Loecker (2013)). Spurred by this set of facts, a number of

recent papers have tried to identify specific mechanisms to explain why productivity

differences are not eliminated by market-based resource reallocation.2

This paper investigates the role of dynamically chosen inputs, such as capital, in

shaping the dispersion of the marginal product of inputs. Specifically, we consider a

variant of a standard dynamic investment model in which firms: a) face costs when

adjusting one factor of production (capital); b) can acquire all inputs in a frictionless

spot market and; c) get a firm-specific productivity shock (measured using revenue

total factor productivity, or TFPR) in each period generated by an AR(1) process.3

Thus, a capital stock determined in some previous period may no longer appear to be

optimal after a productivity shock hits. As a result, dispersion in the marginal revenue

product of capital arises naturally.4 A literal implication is that resource allocation,

1We define our measure of productivity, TFPR, below and discuss its measurement in detail. For recent
work, see Syverson (2011), Bartelsman and Doms (2000), Bartelsman, Haltiwanger, and Scarpetta (2013)
and references therein.

2See Restuccia and Rogerson (2008), Hsieh and Klenow (2009), Collard-Wexler (2009), Midrigan and Xu
(2013), Moll (2012), Bollard, Klenow, and Sharma (2012), and Peters (2012) for recent work.

3Throughout the paper, in discussing our own work, we consider productivity to be TFPR, and use the
terms interchangeably.

4We focus on the marginal revenue product of capital as this seems the input that is most prone to
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while appearing inefficient in a static setting, may well be efficient in a dynamic sense.5

We then evaluate the empirical value of this model, employing two types of data:

The first is country-specific data, which we will refer to as Tier 1 Data, on estab-

lishment/firm production in manufacturing in each of the U.S., Chile, France, India,

Mexico, Romania, Slovenia, and Spain (all of which have been widely used in the de-

velopment and productivity literatures). The second data, which we call Tier 2, are

from the World Band Enterprise Survey (WBES), which allow us to exploit production

data on firms in 33 countries.6 Each type of data has different strengths: the country-

specific data sets have many more observations and tighter data collection protocols,

while the WBES data allow us to access a broader set of countries.

The basic reduced-form pattern implied by the model—that as the volatility of

TFPR increases, so does the dispersion of marginal product of capital—is strongly

supported by data. It is supported both across industries within a country (using the

Tier 1 data), as well as across countries (using the Tier 2 data).

After documenting this basic reduced-form pattern, we take a more structural ap-

proach to see how well the model captures cross-industry variation in dispersion. For

this exercise, we first estimate capital adjustment costs. These adjustment-cost es-

timates, along with an (industry-country specific) AR(1) shock process, are used to

generate model predictions (that is, we hold all other parameters constant). We then

confront the model predictions with the data.

We make three specific contributions in this paper: First, we show that the model of

dynamic inputs can quantitatively replicate dispersion of the marginal revenue product

of capital that is found in the data. This indicates that the model of dynamically chosen

inputs provides a natural benchmark for the dispersion of marginal revenue products

in an undistorted economy. Indeed the literature on misallocation acknowledges that

adjustment costs. This is consistent with data, as we discuss in Section 4.3: we observe more dispersion in
the marginal product of capital relative to that of other inputs.

5The validity of this literal interpretation rests on the relationship between the TFPR process and policy.
Whether this process in amenable to policy adjustment is a question we turn to in the conclusion.

6The WBES data covers firms in the manufacturing, construction, services, and transport, storage, and
communications sectors
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dispersion of marginal revenue products alone is not evidence of misallocation, and

that adjustment costs may play an important role.

Second, we find meaningful differences in the size of TFPR shocks across indus-

tries within countries, as well as across countries, of the same relative magnitude as

differences in the cross-sectional dispersion the marginal revenue product of capital.

Moreover, industries (countries) with the greatest volatility of TFPR also have the

greatest dispersion of the marginal revenue product of capital. These reduced form

results are robust to a wide range of measurement and model specification concerns,

such as alternative specifications of the TFPR process and alternative measures of

volatility; and these results hold both across industries within a country, and across

countries.

Third, we show that a structural implementation of this model can capture, both

qualitatively and quantitatively, much of the cross-industry (country) variation in the

dispersion of marginal revenue products of capital. The model performs strongly: when

confronted with industry-country data on dispersion in the marginal revenue product of

capital it generates a measure of fit equivalent to an uncentered R2 of around 0.8−0.9,

depending on the specification. Our results indicate that, perhaps surprisingly, the

exact level of adjustment costs does not change this measure of fit greatly: whether we

rely on the U.S. estimated adjustment costs or a country-specific one, the measure of

fit is about the same. The absence of adjustment costs, holding all other parts of the

model fixed, leads to a drop in our measure of fit; which suggests that adjustment cost

and volatility play an important role in shaping differences in the dispersion of marginal

revenue product of capital (across industries and countries), and as a consequence are

crucial to understand income differences across countries.

Taken as a whole, these results highlight the importance of dynamic inputs in

explaining, both in levels and differences, the dispersion of the marginal product of

capital. Furthermore, our analysis suggests that producer-level volatility may be an

important factor in explaining aggregate welfare. The productivity process we employ

is a reduced-form for a range of time-varying shocks to production, including (but not
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limited to): demand shocks; natural disasters; infrastructure shocks; variation in the

incidence of corruption or nepotism; changes in markups due to demand shocks or

market-structure changes; and changes to informational barriers. This paper suggests

a channel through which these micro effects can have aggregate implications.7

The remainder of the paper is organized as follows: In Section 2, we present our dy-

namic model of investment. Section 3 presents the data and discusses the measurement

of productivity across several countries. We turn to reduced-form empirical evidence,

and subjects it to a variety of robustness checks in Section 4. Section 5 confronts

the predictions of the dynamic investment model with the data using a structural ap-

proach. In Section 6 we consider cross-country variation using the WBES data. Finally,

we conclude with a discussion of our findings in Section 7.

2 Theoretical Framework

In this section, we posit a simple model that allows us to consider how the time-series

process of TFPR should affect the cross-sectional dispersion of the (static) marginal

revenue product of capital, and other variables. Central to the model is the role of

capital adjustment costs, and a one-period time-to-build, in making optimal capital

investment decisions. These adjustment frictions create links between the time-series

process generating firm-level TFPR shocks and firm-level heterogeneity in the adjust-

ment of capital stocks.

2.1 Modeling preliminaries

We begin by providing an explicit model of TFPR, in the context of a profit-maximizing

firm (since we assume that establishments operate as autonomous units, firms and

establishments, for our purposes, are synonymous). A firm i, in time t, produces

7For micro-based studies that consider the effect of each see: (Collard-Wexler, 2013)(on demand shocks);
(De Mel, McKenzie, and Woodruff, 2012) (on natural disasters), (Fisher-Vanden, Mansur, and Wang, 2012)
(on infrastructure); (Fisman and Svensson, 2007) (on corruption); (De Loecker et al., 2012) (on markups);
and (Bloom et al., 2013) (on information barriers).
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output Qit using the following (industry-specific) constant-returns technology:

Qit = AitK
αK
it LαLit M

αM
it , (1)

where Kit is the capital input, Lit is the labor input, Mit is materials, and we assume

constant returns to scale in production so αM + αL + αK = 1. The demand curve for

the firm’s product has a constant elasticity:

Qit = BitP
−ε
it . (2)

Combining these two equations, we obtain an expression for the sales-generating

production function:

Sit = ΩitK
βK
it L

βL
it M

βM
it , (3)

where Ωit = A
1− 1

ε
it B

1
ε
itb, and βX = αX(1 − 1

ε ) for X ∈ {K,L,M}. For the purposes of

this paper, productivity or TFPR is defined as ωit ≡ ln(Ωit).8

The production function and sales-generating function are industry-specific; and

throughout the paper, the coefficients β and α are kept country- and industry-specific

unless noted otherwise. For ease of measurement, we set ε to be constant for all firms,

industries and countries.

A fact that we will use repeatedly is that, in a static model with no frictions, profit

maximization implies that the marginal revenue product (MRP) of an input should be

equal to its unit input cost. For capital, this static marginal revenue product is given

by:
∂Sit
∂Kit

= βK
ΩitK

βK
it L

βL
it M

βM
it

Kit
. (4)

We will frequently refer to the marginal revenue product of capital (MRPK), which

we measure in logs:

MRPKit = log(βK) + log(Sit)− log(Kit) = log(βK) + sit − kit. (5)

8Throughout the paper, lower case denotes logs, such that x = ln (X).
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The marginal revenue products of labor and materials are defined similarly.9

Our notion of productivity is a revenue-based productivity measure, or TFPR (as

introduced by Foster, Haltiwanger, and Syverson (2008)). As is common in this liter-

ature, we do not separately observe prices and quantities at the producer level, and,

therefore, we can only directly recover a measure of profitability or sales per input

precisely.

This implies that all our statements about productivity refer to TFPR, and, there-

fore, deviations across producers in our measure of productivity, or its covariance with

firm size, could reflect many types of distortion, such as adjustment costs, markups or

policy distortions, as Hsieh and Klenow (2009) discuss in detail.

2.2 A dynamic investment model

We now articulate a dynamic investment model that allows us to examine the link

between TFPR volatility and dispersion in both the static marginal revenue product

of capital and other variables of interest. Our model follows, and builds on, a standard

model of investment used in the work of Bloom (2009), Cooper and Haltiwanger (2006),

Dixit and Pindyck (1994), and Caballero and Pindyck (1996).10

Taking the structure in Section 2.1 as given, we begin by assuming that firms can

hire labor in each period for a wage pL and acquire materials in each period at a price

pM . Both of these inputs have no additional adjustment costs. Thus, conditional on

Ωit and Kit, we can substitute in the statically optimal amount of labor and materials.

This leads to a ‘period-profit’ (ignoring capital costs for the moment) of:

π(Ωit,Kit) = λΩ
1

βK+ε−1

it K

βK
βK+ε−1

it , (6)

9Due to the Cobb-Douglas specification the marginal and average products are equivalent in our setup.
Hence, in the data we measure the average product and, using the model, interpret it as marginal.

10The model used in this paper is a partial equilibrium model, that can be rationalized from a general
equilibrium perspective only if there are no aggregate shocks and a continuum of firms. Bloom et al (2012)
discuss the implications of putting this type of model into a general equilibrium framework with aggregate
shocks, versus using a partial equilibrium model.
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where λ =
(
βK + ε−1

) (βL
pL

) βL
βK+ε−1

(
βM
pM

) βM
βK+ε−1

.

Capital depreciates at rate δ so Kit+1 = (1−δ)Kit+Iit where Iit denotes investment.

These investment decisions are affected by a one-period time to build and a cost of

investment C(Iit,Kit,Ωit).

We employ an adjustment cost function composed of: 1) a fixed disruption cost

of investing and 2) a convex adjustment cost expressed as a function of the percent

investment rate. Formally:

C(Iit,Kit,Ωit) = Iit + CFKI{Iit 6= 0}π(Ωit,Kit) + CQKKit

(
Iit
Kit

)2

. (7)

Next, let ωit follow an AR(1) process given by:

ωit = µ+ ρωit−1 + σνit, (8)

where νit ∼ N (0, 1) is an i.i.d. standard normal random variable. This implicitly

defines the transition function of Ω: φ (Ωit+1 |Ωit, ).

A firm’s value function V is given by the Bellman equation:

V (Ωit,Kit) = max
Iit

π(Ωit,Kit)− C(Iit,Kit,Ωit)

+ β

∫
Ωit+1

V (Ωit+1, δKit + Iit)φ (Ωit+1 |Ωit ) dΩit+1,

(9)

and, thus, a firm’s policy function I∗(Ωit,Kit) is just the investment level that maxi-

mizes the firm’s continuation value less the cost of investment.

Note that since there is neither entry nor exit in this model, there is no truncation

of the TFPR distribution.11 Thus, given the AR(1) structure above, the cross-sectional

11The absence of entry and exit is a consequence of the decreasing returns to scale in the revenue equation
(yielded by constant returns to scale in the production function and an elastic demand curve) and the absence
of fixed costs, which make it profitable for any firm to operate at a small enough scale. See Midrigan and
Xu (2013) for a discussion of the role of entry and exit in a similar model.
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standard deviation of TFPR is given by the ergodic distribution of Ωit. Hence,

Std.(ωit) =
σ√

1− ρ2
. (10)

2.3 Moments of interest

In examining the data we will focus on a set of moments that can be generated by the

model, three of which warrant explicit definitions. For ease of reference, we provide

these definitions here.

The first moment is the dispersion in the (static) marginal revenue product of capital

(MRPK, as defined in equation 5). Dispersion in MRPK is defined as: Stdst (MRPKit),

where the st subscript indicates that the standard deviation is taken within industry-

country s in year t. This will be our most common specification, although at times we

will use different configurations (indicated in the subscript).

We next define the computed volatility in the static marginal revenue product of

capital over time as:

Stdst (∆MRPK) = Stdst [MRPKit −MRPKit−1] . (11)

Third, the volatility in firms’ capital over time is defined as:

Stdst (∆k) = Stdst [kit − kit−1] . (12)

It is important to note that the magnitudes of these three moments are unchanged

if we adopt an alternate specification of the model in which each firm’s TFPR process

has a firm-specific fixed effect; that is, if µ is firm-specific. This result is established

formally in Theorem 1 in Appendix A. At the heart of the result is the property that

a different constant term in the AR(1) results in a level shift in the process, and this

generates level shifts in the inputs (K, L, and M). These level shifts then get cancelled

out when taking differences at the firm level.
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2.4 Comparative statics

We analyze the model using computation. Like Bloom (2009), we use a model in which

investment decisions are made each month (a period in the model). Modeling decisions

at a monthly level is an attractive approach, as the model incorporates the likely time

aggregation embedded in annual data.12 The results we report are in terms of what one

would see in annual data — that is, we aggregate up from monthly decision-making to

the year.

Figure 1 examines the way Stdst (MRPK), the dispersion in the static marginal

revenue product of capital, changes as σ, the volatility of TFPR, changes.13 To generate

this figure we use parameters estimated using U.S. Census data as described in Section

5. Parameters and details of computation can be found in Appendix C. In the figure

there are three lines that correspond to the model with both a one-period time-to-

build and adjustment costs, but with different persistence parameters in the AR(1)

process. From top to bottom, these lines correspond to ρ equal to 0.94, 0.85, and 0.65

respectively.14 Note that, for any specification and any level of ρ, as σ increases so

does dispersion in the static marginal revenue product of capital.

To further understand the pattern in Figure 1, note that this dispersion reflects the

optimal investment choices of firms facing different TFPR shocks over time and, hence,

different state variables. To make the effect of this clear, note that if all firms had the

same capital stock, this graph would contain a series of upward sloping, straight, lines

out of the origin. Yet (focusing on the solid black lines) the relationship between

Stdst (MRPK) and σ is not linear and has a slope change in the region of σ = 0.5

for ρ = 0.94 and in a (wider) region around σ = 0.6 for ρ = 0.85. There is no readily

12This interpretation requires transforming the AR(1) process–which is quoted to reflect, and empirically
estimated off, annual data–into its monthly equivalent. After noting that the sum of normal random variables
with the same mean is distributed normally, this reduces to a straightforward algebraic exercise.

13Where ρ = 0, we can show that the dispersion of MRPK is given by Std(s− k) = 1
βK+ε−1σ. Thus more

volatility of productivity leads to higher dispersion MPRK. This result is straightforward to show, since
with ρ = 0, productivity is no longer a state, and firms choose the same steady-state level of capital. Where
ρ 6= 0, we use the computational simulations in the paper to establish the possibility that volatility increases
misallocation.

14These three values of ρ represent the 90th percentile, median, and 10th percentile in the U.S. Census
data respectively.
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discernible slope change in this range of σ for ρ = 0.65.

To see why this is happening, note that initially, as volatility increases, firms will

engage in more investment and disinvestment. Since greater volatility leads to larger

changes in TFPR, it is natural that firms respond by altering their capital stock more

frequently. However, past a certain point, firms begin to reduce their response to TFPR

shocks. This begins as σ approaches 0.5 for ρ = 0.94 and 0.6 for ρ = 0.85, while for

ρ = 0.65, the same pattern exists but is much more gradual.

At these high levels of volatility, current TFPR is a weaker signal of the future

marginal value of capital. Hence, firms respond less to shocks today because those

current shocks are more likely to be swamped by future shocks. In the limit, where the

TFPR process is an i.i.d. draw, current TFPR provides no information about future

profitability. Firms would choose an optimal level of capital and stick to it forever,

resulting in no variance in investment across firms. Thus, the slope changes evident in

the relationships in Figure 1 reflect a flattening out of capital-adjustments to volatility.

3 Data and Measurement

3.1 Data

We employ multiple datasets in our analysis. Table 1 describes the Tier 1 data. It

consists of country-specific producer-level data from eight countries: the United States,

Chile, France, India, Mexico, Romania, Slovenia, and Spain. Each of these data sets

have been used extensively in the literature; most commonly in the analysis of produc-

tivity.15

The data sets differ in the time period covered, and in how producers are sampled.

Table 1 summarizes the main features of the various datasets. Below we briefly discuss

the various Tier 1 datasets and defer more details to Appendix B.

15See, for instance, Tybout and Westbrook (1995), Roberts (1996), Pavcnik (2002), De Loecker and
Konings (2006); De Loecker (2007), Goldberg et al. (2009), Bloom, Draca, and Van Reenen (2011), and
Konings and Vandenbussche (2005).
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United States The data for the United States comes from the U.S. Census Bureau’s

Research Data Center Program. We use data on manufacturing plants from the Census

of Manufacturers (henceforth, CMF), and the Annual Survey of Manufacturers (hence-

forth, ASM) from 1972 to 1997. The CMF sends a questionnaire to all manufacturing

plants in the United States with more than 5 employees every five years, while the

ASM is a four-year rotating panel with replacement, sent to approximately a third of

manufacturing plants, with large plants being over-represented in the sampling scheme.

The final dataset contains 735,342 plants over a 26-year period.

An industry is defined as a four digit SIC code. Labor is measured using the total

number of employees at the plant. Materials are measured using total cost of parts

and raw materials.

Capital is constructed in two ways. For the majority of plants, including all plants

in the CMF, capital is measured using a question on total assets – be they machines

or buildings – at the plant. For the remaining observations, capital is constructed

using the perpetual inventory method, using industry-specific depreciation rates and

investment deflators from the Bureau of Economic Analysis and the National Bureau

of Economic Research. Capital, materials and sales are deflated using the NBER-CES

industry-level deflators into 1997 dollars.

Chile Annual plant-level data on all manufacturing plants with at least ten workers

were provided by Chile’s Instituto Nacional de Estadistica (INE). These data, which

cover the period 1979–1986, include production, employment, investment, intermediate

input, and balance-sheet variables. Industries are classified according to their four digit

ISIC industry code. The data contain 37,600 plant-year observations. The smallest

number of plants observed in any year is 4,205 in 1983.

France, Romania, and Spain Annual firm-level data on manufacturing firms for

France, Romania, and Spain are obtained from Bureau Van Dijck’s (BvD) Amadeus

dataset and cover firms reporting to the local tax authorities and/or data collection

agencies for the period between 1999 and 2007. We selected three relatively large

European countries at different stages of economic development. The coverage for all
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three countries is substantial in that we cover approximately 90 percent of economic

activity in each of the three manufacturing sectors. For example for France, in 2000,

we record total sales of 739 billion Euros, whereas the OECD reports total sales to

be 768 billion Euros. This implies coverage of 96 percent of total economic activity in

manufacturing. For Spain we find, using the same coverage calculation, coverage of 88

percent. The collection protocol of BvD is consistent across countries. We focus on the

manufacturing sector to facilitate the measurement of TFPR. Industries are classified

according to the two digit NACE Rev 1.1. code for all three countries. Our data covers

firms that are primarily active in sectors NACE Rev 1.1. 15 to 36. This leaves us with

391,422, 174,435, and 457,934 firm-year observations for France, Romania, and Spain,

respectively. The data include standard production data, including sales, employment,

investment, intermediate input and other balance-sheet variables.

India Annual firm-level data on manufacturing firms were provided by Prowess, and

are collected by the Centre for Monitoring the Indian Economy (CMIE). Prowess is a

panel that tracks firms over time for the period 1989–2003. The data contain mainly

medium and large Indian firms. Industries are classified according to the 4 digit PNIC

(the Indian industrial classification code). These data include sales, employment, in-

vestment, capital, intermediate input, and various balance-sheet variables.16 The final

data set comprises 30,709 firm-year observations.

Mexico Annual plant-level data on manufacturing plants are recorded by Mexico’s

Annual Industrial Survey and are provided by Mexico’s Secretary of Commerce and

Industrial Development (SEC-OFI). These data, which cover the period 1984–1990,

include production, employment, investment, intermediate input, and balance-sheet

variables. The sample of plants represents approximately eight percent of total output,

where the excluded plants are the smallest ones. Industries are classified according to

the Mexican Industrial Classification (a four digit industrial classification system). The

final data contain 21,180 plant-year observations. The minimum number of observed

16The Indian data do not report the wage bill separately from the number of workers. We do, however,
take care to appropriately deflate the wage bill.
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firms in a year is 2,958 in 1989.

Slovenia The data are taken from the Slovenian Central Statistical Office and are the

full company accounts of firms operating in the manufacturing sector between 1994 and

2000. We have information on 7,915 firms: an unbalanced panel with information on

production, employment, investment, intermediate input, and balance-sheet variables.

Industries are classified according to the two digit NACE Rev 1.1. code.

3.2 Measurement

To guide the measurement of TFPR, we build on the model in Section 2.1 and, in

particular, rely on the sales-generating production function in equation (3). In order

to recover a measure of TFPR, ωit, we need to compute the value of βL, βM and

βK by industry-country. Profit maximization implies that for each input facing no

adjustment costs, the revenue production function coefficient equals the share of the

input’s expenditure in sales, or formally:

βX =
PXit Xit

Sit
for X ∈ {L,M} . (13)

As mentioned before, we allow βX to vary at the industry level within a country,

thereby allowing the production function to vary across industries and countries. In

practice, in order to obtain a robust measure of these shares, we rely on the median of

the expenditure share for labor and intermediate inputs, in a given industry-country

(sc), or

βscX = median

({
PXit Xit

Sit

})
for X ∈ {L,M} , i ∈ sc. (14)

To recover the coefficient on capital, βK , we use our assumption of constant returns

to scale in production– i.e.,
∑

x αx = 1, such that:

βK =
ε− 1
ε
− βL − βK . (15)

In order to compute βK we need to assign a value to the elasticity parameter, ε. We
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follow Bloom (2009) and set it equal to four.

Finally, to compute TFPR, we simply plug in the coefficients obtained above into

equation (16), below, and compute for each individual firm in a given industry-country

pair:

ωit = sit − βKkit − βLlit − βMmit. (16)

For a small fraction of the industry-country pairs for which the sum of the labor and

material coefficients exceeds 0.75, and thus would imply a negative capital coefficient,

we proceed by using the relevant country’s average coefficient. For the one country,

Slovenia, for which the average material coefficient is above 0.75, we rely on OLS

production function coefficients, effectively using the average output elasticities.17 Im-

portantly, this approach in inferring βK allows capital to have adjustment costs, since

it does not rely on a static first-order condition for capital.18

To measure the sales generating production function coefficients, and subsequently

TFPR (ωit), we require a measure of firm-level sales (Sit), employment (Lit), mate-

rial use (Mit) and the capital stock (Kit). We follow the approach to measurement

described in Bartelsman, Haltiwanger, and Scarpetta (2013) which uses data sources

comparable to those we use. When measuring the the value of the capital stock, we

either construct the capital series from the investment data, or we directly observe the

book value of a producer’s tangible fixed assets. We deflate all output and input data

with the relevant country-industry specific producer price deflators.

We provide summary statistics describing our datasets in Table 2. In the left panel

we report the median number of workers, and median sales and TFPR growth. The

right panel lists the various standard deviations that are of direct interest for our

analysis: dispersion in MRPK, dispersion in capital and TFPR, and a simple measure

of volatility given by Std(ωit − ωit−1).

As expected, the median size varies substantially across the various datasets due to

17Alternatively, we could estimate the output elasticity directly from production data. We follow the
standard in this literature and rely on cost shares to compute TFPR and thereby avoid the issues surrounding
identification of output elasticities (in our case, across many industries and countries).

18See De Loecker and Warzynski (2012) Section II.A for more discussion.
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different data collection protocols.19 Productivity growth varies across countries, and it

is no surprise that Slovenia and India are the fastest growing economies. The dispersion

in MRPK ranges from 0.98 in the U.S. to 1.56 in Slovenia. The next section examines

the relationship between dispersion in MRPK and volatility, a central implication of

our model, in more detail.

4 Reduced Form Evidence

4.1 Main Results

We begin our analysis by plotting, in Figure 2, the relationship between the dispersion

in MRPK and volatility of TFPR for the U.S. Census data, with each dot on the graph

representing a specific four digit SIC code. We start with the U.S. Census data, since

this is the richest data source we have access to and the dataset in which issues of

measurement and sampling frame are plausibly the least important. We find a striking

positive relationship between volatility of TFPR and MRPK dispersion.

To see if the relationship between MRPK dispersion and volatility of TFPR hold

up more generally, Table 3 presents, for each of our Tier 1 data sets, regressions of the

dispersion in MRPK, on TFPR volatility, controlling for industry fixed effects. The

focus of Table 3 is the set of country-specific regressions, where the unit of observation

is the industry-year. The last two regressions pool the data, such that the unit of

observation is the industry-country-year.

For each of the countries, there is a positive, and significant, coefficient. Notably,

in the U.S. Census, we see a coefficient of 0.76 (using plant-level data) and 0.68 (using

firm-level data), both of which are significant at the 1% level. Since we observe no

economically significant difference between plant- and firm-level data using the U.S.

census, from this point on, we use plant-level data in computing U.S. numbers.

These country-specific regressions are consistent with the model prediction that

19In Table OA.5 in the Online Appendix we verify the robustness of our results to using a common size
threshold.
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dispersion in the static marginal revenue product of capital, at the country-industry

level, should be positively correlated with the volatility of TFPR shocks.

Pooling across countries, we see the same pattern. The reported coefficients are 0.55,

when the data is pooled in an unweighted way, and 0.74, when the weighting matrix

accounts for the number of industry-year observations in a country. Figure 4a plots the

dispersion in static marginal revenue product of capital against volatility. While the

number of countries is very limited, it suggests a positive relationship between both

variables.

An important element in these regressions is the measurement of volatility. In Table

3 we measure volatility by Stdst(ωit−ωit−1). This allows the shock process to vary over

time, but is not an exact replication of the AR(1) process posited in the model. In what

follows we asses the sensitivity of these baseline results to alternative specifications of

the TFPR shock process.20

Table 4 takes alternate measures of the volatility of the TFPR process and runs

country-specific regressions mirroring those presented in Table 3. The three measure

used are: Stds[ωit − ωit−1]; an AR(1) measure which is the σs term in the following

specification: ωit = µs + ρsωit−1 + σsνit; and, finally, an AR(1) specification in which

we replace µs with a producer-level fixed effects. In Table 4 we refer to this last

specification as ‘AR(1)FE’. The AR(1) specifications impose the restriction that σs

is constant over time. To keep our alternative measures comparable, we impose the

same restriction on our ‘vol’ measure.21 These volatility measures are highly positively

correlated. The correlation coefficient for any pair of measures, for any country, exceeds

0.72 and is often above 0.9.22

In all regressions the coefficient on volatility is positive, and in all but two cases

– out of 24 – the coefficient is significant at the 10% level or better. In addition, the

20Note that the specification for our AR(1) process rules out aggregate-level shocks to TFPR growth.
However, a regression of changes in TFPR on country-year dummies yields R2’s between 0.001, for Mexico,
and 0.023, for Chile, when running TFPR growth against year dummies. Thus, there appears to be only a
small aggregate component to TFPR change.

21As a consequence, the results in Table 3 (at the country-industry-year level) differ in magnitude from
those presented in Table 4 (at the country-industry level) .

22Table OA.4 in the Online Appendix reports these statistics.
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magnitudes of the coefficients are comparable across all specifications, although the

AR(1)FE specification tends to produce coefficients that are somewhat higher than the

other two specifications. This is likely due to some of the σs variation being absorbed

by the producer fixed-effect.

Overall, the results support the conclusion that the qualitative reduced-form pat-

terns observed in the baseline specification (Table 3) are robust to alternative specifi-

cations of the TFPR process.

4.2 Additional Implications

So far we have focussed on the relationship between the dispersion in MRPK and

volatility of TFPR. Although, this is the main prediction of our model, there are

a number of additional implications, both at the individual producer and aggregate

levels. We explore these below.

4.2.1 Individual Producer Implications

An essential prediction of our model is that adjustment costs in capital, coupled with

TFPR shocks, lead to differences in MRPK among producers. The model thus implies

that once producers install capital, TFPR shocks should manifest themselves in vari-

ation in MRPK across producers. In the absence of adjustment costs – including a

one-period time-to-build – producers could simply adjust their capital, and this would

lead to the equalization of MRPK across producers. To test this mechanism, we run

the following regression for each of our Tier 1 countries:

MRPKit = γ0 + γ1ξit + γ2kit + γ3ωit−1 + γt + γs + νit, (17)

where ξit ≡ ωit − ωit−1 is the “shock” in TFPR between t and t − 1. From our

one-period time-to-build assumption, this shock has not been observed when the firm

makes its investment decision about capital stock kit at time t− 1. We also condition

on lagged TFPR to make sure we compare two firms with the same TFPR at t − 1
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making the same capital decision, and we ask whether their MRPK is different if they

are hit by different TFPR shocks ξit. Our theory predicts a positive coefficient for γ1.

The null hypothesis, given by the static model, is no meaningful dispersion in MRPK

as a function of TFPR shocks between t and t − 1. Table 5 lists the estimates for

γ1 by country. In every case, in every specification, we observe a significant, positive

coefficient on the capital coefficient, γ1, as predicted.

A further prediction of our framework is that a producer’s MRPK should be mean

reverting. We run a regression of MRPK at time t on MPRK at time t− 1, and obtain

estimates of the AR(1) coefficient. This coefficient varies by country from 0.73, for

Romania, to 0.90, for Chile. The coefficient is significant at the 1% level in all cases.

Hence, across all countries we find evidence for mean reversion in the MRPK. That

is, in the long run, the restriction of adjustment costs on capital fades, and a firm’s

capital level reverts to the time invariant mean.23

4.2.2 Aggregate Implications

In addition to the aggregate implication that the dispersion in MRPK is strongly related

to the volatility of TFPR, our model suggests two additional aggregate implications:

The following moments, at the industry-year level, are all correlated with volatility: a)

the dispersion in the change in MRPK; and, b) dispersion in the change in capital.24

We pool across all our Tier 1 countries, and run reduced-form regressions for both

these aggregate variables, measured at the industry-year-country level, on volatility.

We include year and country fixed effects, and cluster standard errors by country. The

regression results are shown in Table 6.

We begin with the dispersion in the change in MRPK, Stdst(∆MRPK). Model

23We run MRPKit = µ + ρMRPKit−1 + νit by country, and include year and industry fixed effects. The
standard errors are clustered at the firm/plant-level to account for serial correlation and heteroskedasticity.
All estimates of ρ are significant at the 1 percent level. Table OA.14 in the Online Appendix lists the
estimates.

24A related literature explores the responsiveness of productivity dispersion to the business cycle. Bach-
mann and Moscarini (2012), Bloom et al. (2012), and Kehrig (2011) all find that productivity volatility
increases in recessions. We find no economically significant impact of recessions on the dispersion of MRPK,
although, like Bloom et al. (2012), we see sales volatility increase. Given that MRPK is the sales to capital
ratio, this suggests that capital input adjustments offset any effect coming via changes in sales.
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simulations (as described in Section 2.4) indicate that the dispersion in the change

in MRPK should be positively correlated with volatility.25 In Table 6, we observe a

positive and significant correlation between volatility and the dispersion in the change

in MRPK both within the U.S. data, and within the pooled data across all Tier 1

countries (both excluding and including the U.S.). While the degree of correlation

should vary with the persistence of the AR(1) process present in each country, the

positive correlation in the pooled sample is consistent with the model prediction.

The second moment we examine, the dispersion in the change in capital Stdst(∆k),

has a strongly non-linear relationship to volatility. Figure 3 shows the relationship

predicted by the model using the same simulation procedure as in Section 2, where

panel (a) presents this relationship for the adjustment costs we will estimate for the

U.S. in the next section, and panel (b) also includes the case without any adjustment

cost, but preserving the assumption of a one-period time-to-build. The reader should

note the difference in the vertical scale for these two panels.

Figure 3 reflects the mechanism described in Section 2.4. That is, the flattening of

the change in capital-adjustments as volatility increases reflects to the changing trade-

off between the size of shocks experienced today and the likelihood that they will be

swamped by future shocks. This holds for both panels (a) and (b) in figure 3.

To examine this in a reduced form, we interact the volatility coefficient with a

dummy if the volatility associated with that industry-year-country observation is higher

than the median for that industry-country. The model prediction is that the coefficient

on this interaction is (weakly) negative. As can be seen in Table 6, this coefficient is

always negative and, in the case of the U.S. and the all-country sample, significant.

4.3 Adjustment Costs in Other Inputs

Our model makes the stark assumption that capital is the only input that faces ad-

justment costs, and our empirical approach builds on this assumption. This is clearly

a simplification of the data-generating process.

25See Figure OA.1 in the Online Appendix. The lines describing the relationship is essentially straight.
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This approach is based on the implicit claim that, across the span of countries and

industries examined in this paper, capital adjustment costs are first-order as compared

to the adjustment costs of other inputs. A simple way to evaluate this claim is to

examine the (log) dispersion in the marginal revenue products of capital, labor, and

intermediate inputs (k, l, and m). To do this we compute Stdst (ln(βX) + sit −Xit) for

X ∈ {k, l,m} for each country. Table 7 shows the results.

Across all countries, dispersion in the marginal revenue product of capital is greater

than that for any other input. Further, the order of dispersion is in line with what one

might expect: Std(MRPK) > Std(MRPL) > Std(MRPM). Given these results we

proceed with the maintained assumption that capital adjustment costs are the most

important component of the adjustment costs likely facing many firms in making input

decisions.26

5 Structural Analysis

In this section we evaluate the ability of the model to capture the magnitude of the

degree of dispersion in the marginal product of capital at the industry level, across our

Tier 1 country datasets.

We begin by evaluating a baseline specification of our model, in which we assume all

industry-countries have the same production technology and the same adjustment costs

(we use the U.S. mean production coefficients, with the adjustment costs estimated

from the U.S. data). In this simple version, the only thing that varies over industries

in the structural model is the AR(1) process governing TFPR shocks. This specification

is intended to highlight the extent to which, on its own, the TFPR shock process can

capture dispersion in marginal products.

Following this baseline specification, we explore the extent to which using industry-

26Bloom et al. (2012) estimate a structural model of adjustment costs in both labor and capital using
Compustat data on U.S. firms. While the model of Bloom (2009) is suggestive of an similar extension in
our setting, given that we encompass 8 countries in our Tier 1 data, and 33 in our Tier 2 dataset, we have
chosen to use a more parsimonious model. In our data environment, it seems to strike an appropriate balance
between realism, insight, and feasibility.
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specific production functions and different adjustment cost specifications allow us to

capture additional richness. Before getting to these results, we first set out the elements

in the structural estimation of the model.

5.1 Estimation

We briefly discuss the estimation of the crucial parameters of our structural model,

those that vary by industry – i.e., the TFPR process, and how we recover the estimates

of the adjustment cost parameters.

The AR(1) TFPR process is specified as: ωit = µsc+ρscωit−1+σscνit. Note that the

coefficients are country-industry specific. Estimation follows the procedure described in

Section 4 and relies on standard maximum likelihood estimation techniques to recover

the parameters.

Recall that the adjustment cost specification is given by:

C(Iit,Kit,Ωit) = Iit + CFKI{Iit 6= 0}π(Ωit,Kit) + CQKKit

(
Iit
Kit

)2

. (18)

We estimate θ = {CFK , C
Q
K} using a minimum-distance procedure very similar to that

in Cooper and Haltiwanger (2006). That is, we seek parameters that minimize the

distance between the moments predicted by the model, and those that are found in

the data. The moments we use are: the proportion of firms with less than a 5 percent

year-on-year change in capital; the proportion of firms with more than a 20 percent

year-on-year change in capital; and the standard deviation of the year-on-year change

in log capital.27

Denote the predicted moments from the model for an industry s in country c as

Ψcs(θ), found by solving for the firms’ optimal policies and simulating the model for-

ward for 1000 months for 10,000 firms, and computing moments based on the last

27Notice that according to the results of Theorem 1, stated in the appendix, these moments are invariant
to differences in the mean µ of the TFPR process, and thus we do not need to take a stand on the presence
of a firm fixed-effect in the estimation procedure. However, we have also looked at the model’s predictions
using estimates of the AR(1) process that include a producer fixed-effect for the United States, and we find
comparable results (contained in Table OA.14 in the Online Appendix).
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two years of the simulated data set.28 These predictions may differ across industries,

depending on production function coefficients βl, βm, and βk, as well as the TFPR pro-

cess estimated in the previous subsection. We then aggregate the industry prediction

to the country level by taking a weighted average of the industry-level prediction; i.e.,

Ψc(θ) = 1P
sNsc

∑
sNscΨcs(θ), where Nsc denotes the number of producers in indus-

try s for country c. Thus, the country-level predictions are matched to country-level

moments on changes in capital, where the moments from the data are denoted Ψ̂.

We estimate the model’s adjustment costs using minimum distance with a criterion

function given by the usual quadratic form, with weighting matrix W:

Q(θ) =
(
Ψ̂−Ψ(θ)

)′
W
(
Ψ̂−Ψ(θ)

)
. (19)

As the moments in the data are similarly scaled, we pick the identity matrix as a

weighting matrix (W = I). We find the minimized value of the criterion using a grid

search.

Table 8 presents estimates of the adjustment costs by country, along with the

moments used to estimate the model. Three aspects of the table are noteworthy.

First, the moments on the year-to-year change in capital differ substantially between

countries. For the United States, over 39% of plants do not change their capital by

more 5%, while this number is 20% for Spain, and 8% for Romania.29 Likewise, the

share of plants that vary their capital by more than 20% is 21% for the U.S., 28% for

Chile, but 76% for Slovenia. These differences in the variation of capital translate into

differences in the estimated adjustment costs by country, with the U.S. having relatively

high convex and fixed adjustment costs, and Mexico having convex adjustment costs

that are at least five times smaller.
28We employ a very fine grid for capital stock (of 3 percent), since fixed costs are identified from the

absence of small changes in capital. With a coarser grid for capital stock, it is difficult to identify small
fixed costs. This comes at the expense of computational time, and solving the value function takes over
a half-hour. The total computation time required for a single 3GHz processor to complete the estimation
and simulations reported in this section is 2,286,000 minutes (1,587 days). The computational burden was
significantly reduced via parallel computation on a large computing cluster at NYU. For further details
regarding computation, see Appendix C.

29Note that Spain and Romania are firm-level data.
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The large differences in moments on changes in capital are striking. Beyond differ-

ences in adjustment costs, they also reflect differences in patterns of aggregate growth

for each of these countries, and differences in the data collection protocols for Tier

1 data. For instance, Slovenia experienced a rapid increase in output over the time

period we study (1994-2000), but this is not the case for the U.S. manufacturing sec-

tor from 1963 to 1997.30 As well, for some datasets, changes in capital are computed

from the change in the reported book value of assets, while for other datasets, these

are inferred from investment and depreciation. Presumably, these differences in the

reporting protocol will also lead to differences in the measurement in the change in

capital.

Second, for several countries—France, Mexico, Romania—we estimate no fixed costs

of adjustment (beyond the one-period time-to-build, which is in itself a form of adjust-

ment friction). In these countries, even with no fixed cost of adjustment, the model

predicts that fewer firms would change their capital by less than 5% than what we find

in the data. Conversely, a zero convex cost of adjustment is strongly rejected. As the

convex adjustment costs get closer to zero, the volatility of capital rises sharply. Given

the data, this allows us to conclusively reject the absence of any costs of adjusting a

firm’s capital stock.

Third, focusing on the U.S., we obtain the following estimates: fixed adjustment

costs (CFK), 0.09; convex adjustment cost (CQK), 8.8. The fixed cost of adjustment is

equivalent to 1.5 months of output, while the convex adjustment costs are such that

when a firm doubles its capital in a month, this component of cost is equal to 8.8 times

the value of its investment.31

To assess the fit of the model, we compute the sum of squared errors, scaled by the

sum of the squared ‘dependent’ variable (data). That is, if the data are a vector x that

30Since the standard approach to estimating adjustment costs which we use, such as found in Cooper
and Haltiwanger (2006) or Bloom (2009), matches moments from the steady-state distribution, this type of
model has difficulty dealing with aggregate shocks.

31These parameters can be compared to those found in Bloom (2009) (Table 3, column 2) who, using a
sample of (only) large publicly listed firms in Compustat, obtains fixed adjustment costs of 0.01 and convex
adjustment costs of 1.00.
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is predicted by a variable x̂, then we compute

S2 = 1− (x− x̂)′ (x− x̂)
x′x

(20)

as our measure of fit. This measure of fit is closely related to the uncentered R2 measure

of fit familiar from regression analysis. However, because our model’s prediction does

not come from a regression, but from a parameterized model, nothing in the structure

restricts S2 to lie in [0, 1], though, by definition, it must be less than or equal to one.

That being said, to map our measure of fit into a context equivalent to the R2, it is

correct to interpret S2 as the proportion of the observed data captured by the model’s

prediction, with the caveat that it is possible for this number to be negative.

5.2 Results

As noted above, our baseline specification assumes that all industries in all countries

have the same adjustment costs and the same production technology. We take both

from the U.S. data: we use the mean U.S. production coefficients and U.S. adjustment

costs.32 Our objective in evaluating this specification is to highlight the extent to which

(just) differences in the AR(1) process can capture dispersion in the marginal revenue

product of capital, at the industry level, across a variety of data sets (equivalently,

countries).

Table 9 shows the S2 measure of fit, comparing the model prediction of the disper-

sion in the MRPK to that observed in our various Tier 1 data sets. Pooling across all

industry-countries, the S2 is 0.674, while, if the U.S. is excluded, the S2 is 0.879. This

suggests that the model does a good job of capturing the observed dispersion. It also

highlights the curious fact that the performance of this baseline model is worst on the

U.S. data, despite being based on U.S. numbers.

The U.S. S2 is 0.223, as compared to 0.879 for all non-U.S. countries. The reason for

this is that the U.S. data employs a far finer industry definition than do our other data

32Mean production coefficients are computed by taking the mean of the industry labor and materials
coefficients and then using these to compute the capital coefficient.
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sets. In the U.S. data firms are allocated to one of 188 industry classifications, whereas

in the other data the numbers of industries varies from 8 (Chile) to 52 (Mexico).33

This means that, when we impose mean production coefficients, we do so on industry

definitions which incorporate differing levels of aggregation. In the U.S., where the

industries are finely defined, this means that some industries will have firms that all use

production technologies that differ markedly from the standard firm in the economy. As

a result, the baseline model can have a hard time capturing the investment patterns

observed in these industries when it has to use the production coefficients from a

‘standard’ firm.

The impact of industry heterogeneity in the U.S. data is illustrated by compar-

ing specification (2) to specification (1) for the U.S.34 Specification (2) adds industry

specific production coefficients to the model. Once industries are allowed to vary in

their production technology the U.S., S2 increases from 0.223 to 0.806, reflecting the

model’s increased capacity to captures investment patterns across a much wider range

of industries.

As illustrated by the preceding discussion of the baseline results, adding more flex-

ibility to the model can increase the extent to which the dispersion in the data can

be captured. To this end, we depart from the baseline model and allow each country

to have its own adjustment costs (from Table 8), and allow each country-industry to

have its own production function coefficients (specification (2) in Table 9). Following

that we investigate the sensitivity of this expanded model to changes in the adjustment

costs: we impose U.S. adjustment costs, twice the U.S. adjustment costs, and zero ad-

justment costs (aside from the one-period time-to-build) on all countries (specifications

(3), (4), and (5) respectively, in Table 9).

Prior to discussing results, we outline some measurement issues: Recall that we

33After accounting for disclosure, and basic data integrity (i.e. missing data etc.), the numbers of industries
by country (data-set) are: Chile 8, France 21, India 20, Mexico 52, Romania 21, Slovenia 18, and Spain 22.
The U.S. has 188. This merely reflects that the detail of industrial activity reporting varies across datasets.
For example for the French data we observe the principal activity of the firm, a 2 digit industry code, while
we also observe its (potentially) multiple 4 digit industry codes. However, we do not see the output and
input data broken down at this level of aggregation, which is standard in these data.

34In Table 9, specifications (2) and (3) are equivalent for the U.S.
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assume βl + βm + βk = 0.75 (given constant returns in the production function, and a

demand elasticity of -4). Given this, we handle the data as described in Section 3.2, with

one exception: In the Slovenian data, the material coefficient is greater than 0.75 on

average. As a result a strict application of our procedure would imply negative capital

coefficients for all Slovenian manufacturing sectors, which we think is not plausible.

To avoid having to omit Slovenia, an interesting country in its own right, we use the

mean U.S. coefficients to generate all Slovenian results in this section.35

Across specifications (2), (3), (4), and (5) there is little qualitative difference in

the capacity for the model to capture dispersion. This reflects the good fit of the

baseline model. That is, there is not a great deal of scope for improvement in many

cases. Perhaps most interestingly, the model’s performance in capturing dispersion in

MRPK is not dramatically altered by changing the level of adjustment costs. A zero

adjustment cost reduces fit in most countries somewhat, but imposing twice the U.S.

adjustment cost does not have an economically meaningful impact. This suggests that

the presence of some capital adjustment friction is important, but that the extent of

the friction is not crucial, at least as far as dispersion in MRPK is concerned.36 In the

absence of any adjustment cost in capital, including time to build, the model evaluated

under our parameter values an S2 of zero (under-prediction). Note that, when the

model over-predicts dispersion, it is possible for this S2 measure to become negative.

35Slovenia is interesting due to the volatility introduced by the transition process it experienced during our
sample time period. Using U.S. production coefficients keeps the specification consistent with the structural
model, albeit in a way that restricts us to examining how Slovenian firms would behave if they had the
production technology of U.S. firms.

36For other moments, notably the dispersion in the change in capital, the level of the adjustment can make
a significant difference. See Table OA.2 in the Online Appendix, and in particular column (5) corresponding
to the case of no adjustment costs. To examine the sensitivity of the models’ predictions to the potential
misspecification of the productivity process, we leverage Theorem 1, and, impose the σ and ρ terms from
an alternative productivity process allowing for firm fixed effects, where we rely various dynamic panel data
estimators. Table OA.3 in the Online Appendix shows that our results are robustness to the inclusion of
producer-level fixed effects in the productivity process.
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6 Cross-country analysis

The main source of variation that we have relied on thus far is cross-industry variation

within a country. Although our results suggest a positive correlation between dispersion

and volatility in cross country settings, drawing a stronger inference is limited by only

having a sample of eight countries, each with different data collection protocols. In

this section, in order to provide auxiliary evidence that speaks to such a conclusion,

we exploit a larger-cross section of developing countries for which we only observe a

sample of firms for, at most, three consecutive periods. To this end, we rely on the

WBES data. These data trade off greater cross-country variation, at the expense of

stricter data collection protocols and a much larger, within-country, sample of firms.

As before, we apply our reduced form and structural analysis (as carried out in Section

4 and 5, respectively) on a large cross-section of countries. We briefly introduce the

data before we present our results.

6.1 The WBES Data

The WBES data were collected by the World Bank across 41 developing countries and

many different industries between 2002 and 2006. Standard output and input measures

are reported in a harmonized fashion. In particular, the data report sales, intermediate

inputs, various measures of capital, and employment, for a three-year period, which

allows us to compute changes in TFPR and capital. Out of the 41 countries in the

data, 33 have usable firm-level observations. This is primarily because, for many years

and countries, the World Bank did not collect multi-year data on capital stock.

To construct data on both TFPR and the change in TFPR we need two years of

information on sales, assets, intermediate inputs, and employment. 5,558 firms across

our 33 countries meet this criterion.37 The firms in the final data are almost certainly

not representative of firms in their economies; for instance, the mean number of workers

is 248. Thus, for instance, the data tend to oversample larger firms. In Appendix B

37We also drop countries with fewer than 25 observations.
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we provide further details on sample construction and compare the firms in our sample

with the universe of sampled firms.

6.2 Cross-Country Reduced-Form Results

We start by establishing the relationship between static misallocation and volatility

across countries, using a similar method to what we used at the industry-level. Figure

4b plots the volatility of TFPR against the dispersion of MRPK for our 33 countries

in the WBES data. We find the same striking positive relationship as we presented in

Figure 2 in Section 4 using U.S. Census data. Figure 4a shows the same exercise for

the eight Tier 1 countries.

The solid black line in Panel (b) shows the line of best fit, corresponding to a re-

gression in which dispersion is projected onto a constant and volatility, where country

observations are weighted by the number of in-country observations.38 This positive,

significant, correlation between dispersion and volatility is robust to alternate specifi-

cations which use alternate weights, industry fixed effects, and controls for firm size.39

The relationship can also be replicated using country-industry observations.

6.3 Structural analysis

We now perform a structural analysis of the World Bank data, in the same spirit as that

conducted in Section 5. We apply the same model, with two alterations. We estimate

a AR(1) process for TFPR at the country-level; and we use the adjustment costs

estimated for the U.S. reported in Table 8. We use U.S. adjustment costs since we found

in the analysis of the Tier 1 country datasets that the precise level of adjustment costs

appears to have little influence on the ability of the model to capture the dispersion in

the MRPK. Hence, we examine the capacity of the model to capture dispersion using

this simple specification.

38See the notes accompanying the figure for the coefficients and standard errors.
39The last two specifications use firm-level observations. A complete set of results can be found in Table

OA.16 in the Online Appendix.
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To obtain country-level predictions, we aggregate predictions at the industry-level,

using the number of producers in an industry as weights. Moreover, since dispersion

in MRPK at the country-level includes both variation in MRPK within an industry,

as well as between industries, we need to account for both these sources of variation

when aggregating MRPK.

The results are depicted in Figure 5. The countries in the World Bank data are

shown using unfilled circles, while, for comparison, the Tier 1 countries are shown using

filled circles.40 The horizontal axis measures the model’s prediction, while the vertical

axis measures the dispersion in MRPK present in the data.

The model does quite well. The S2 for the WBES countries is 0.802. This is

comparable to the model performance reported in Table 9 for the industry-level data

from Tier 1 countries. When we treat the Tier 1 country data in the same way as

the WBES data, we get an S2 of 0.906 . Also, if anything, the model has a tendency

to over-predict the dispersion in MRPK, suggesting that the dispersion observed in

data is less than what might be expected to be generated by firms operating in the

U.S., facing U.S. adjustment costs, but otherwise equivalent AR(1) and technological

environments.

6.4 Volatility and external measures

So far, our strategy has been to estimate volatility of TFPR and see how this measure

of volatility is linked to the dispersion in various economic variables. We have shown

that volatility varies across industries within countries, as well as across countries.

Although it is beyond the scope of this paper to develop a theory of volatility to

explain why volatility varies across different economic environments, it is only natural

to ask whether our measures of differences in volatility across countries are related to

features of these economies.

To this end we match the World Bank Doing Business Dataset (henceforth the

40The Tier 1 country data is aggregated in the same way as the World Bank data, and we use a country-
specific AR(1) process in in the model simulation.
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WBDB data) with the WBES data and check whether volatility is correlated with

some of the survey questions in the WBDB data. In particular we examine whether

countries with greater volatility also face more frictions in contract enforcement —

measured in terms of cost and duration of contract enforcement— factors that would

plausibly affect the uncertainty faced by producers. Similarly, we also collected data on

the extent of natural disasters per unit landmass, and an index of political stability.41

When we regress volatility against the cost of contract enforcement measure, the

duration measure and a constant, we find a significant—at the ten percent level—

and positive coefficient on cost, and an R2 of 7%. Time to enforce is not significant,

economically or statistically. This suggest that countries that exhibit larger volatility

are also characterized by higher contracting costs. A regression of volatility on a

constant and natural disasters per unit landmass also yields a positively coefficient on

political stability, and is also significant at the 10% level. Given the limited number of

countries for which we have measures of volatility, this seems as a precise an estimate as

one could reasonably expect. Interestingly, the political stability index is not significant

in any regression, although the correlation does have a negative sign. When we run a

regression with all of our measures of the economic environment in a country against

volatility and we find, as before, that the cost of contract enforcement is associated

with significantly higher volatility. Moreover, the F-stat is significant at the 10%

level, indicating that the combination of cost and duration of contract enforcement,

political instability, and natural disasters does explain some component of the cross-

country differences we observe in volatility. In particular this simple linear cross-

sectional regression leads to a R2 of 14.3 percent. While speculative, these reported

correlations suggest that there may be linkages between volatility and features of a

country’s operating environment that are worth investigating further.

41The Online Appendix provides more details on the data and the analysis: Section 0.1 describes the data
and variable construction. Table OA.13 presents the regression results.
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7 Conclusion

The primary contribution of this paper is to establish the link between the dynamic

process governing TFPR changes over time, and cross-sectional measures of dispersion

in the marginal product of capital. We have shown that a parsimonious model of

the TFPR process coupled with capital adjustment costs explains both the level and

variation of the dispersion in the static marginal revenue product of capital across

industries within countries, and across countries. We do this by examining eight large-

scale country-level data sets, including the U.S. Census, (Tier 1 data) and then extend

the analysis with data from the World Bank on a further 33 developing countries (Tier

2 data). The cross-industry findings are primarily supported by the Tier 1 data, while

the cross-country findings are primarily supported by the Tier 2 data.

These findings suggest that producers in industries (countries) that experience

larger ‘uncertainty’ in the future operating environment (i.e., higher volatility in TFPR)

make different investment decisions than those producers active in less volatile envi-

ronments. This leads to different levels of capital and output and, moreover, means

that the welfare gains from policies inducing reallocation of factors of production are

likely to be lower than otherwise implied by static models, at least to the extent that

the TFPR process is exogenous. Indeed, if one has the view that the productivity

process is an exogenous, or primitive, feature of the model, then our findings suggest

that, in an aggregate sense, the firms in the countries we studied are acting much as

the social planner in our model would have them act (assuming that the social planner

takes the capital adjustment costs as given). This suggests that there are few welfare

implications for differences in cross-sectional measures of (static) capital misallocation

across industries or countries. On the other hand, if government policy can affect the

productivity process, then there may be significant welfare dividends to policy inter-

ventions aimed at moving toward some socially-optimal productivity process. However,

characterization of what this optimal process is likely requires a more subtle modeling

approach than that offered here.
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This raises the important issue of the specific sources of adjustment costs and TFPR

volatility, a topic on which we provide some suggestive evidence, but otherwise leave

open for future research. In particular, TFPR is not just technological in nature. Our

measure of TFPR volatility will capture changes in managerial and physical technology.

It will also capture year-on-year variation in the intensity of corruption (and the implicit

tax therein); other aspects of the application of the rule of law relevant to business (such

as erratic contract enforceability); changing regulatory frictions; environmental factors

(e.g., floods and other natural disasters) and the efficacy of infrastructure used to cope

with them; and year-on-year variation in markups and product market competition.

Many of these elements of measured productivity volatility may be effectively influenced

by appropriate policy aimed at providing a stable business environment.
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Table 1: Tier 1 Data sources

Country Plant Firm Provider – Survey Type Size Threshold Years Covered Obs/Year

United States X X U.S. RDC - Census More than 5 workers 1972-1997 69,231

Chile X INE – Census More than 10 workers 1979-1986 4,700
France X BvD Amadeus – Tax Records No 1999-2007 44,444
India X CMIE (Prowess) – Balance Sheet Large Firms 1989-2003 2,047
Mexico X SEC-OFI – Sample Medium/Big Plants 1984-1990 3,026
Romania X BvD Amadeus – Tax Records No 1999-2007 19,444
Slovenia X Statistical Office – Census No 1994-2000 4,151
Spain X BvD Amadeus – Tax Records No 1999-2007 55,556

Note: The X refers to which unit of observation the specific data records. Datasets can comprise both firm- and plant-level data if the
plant-level data contains firm identifiers. For the U.S., Obs/Year is plant observations per year. The Obs/year is the average number of
firms/plants per year calculated from the total firm/plant-year observations and the number of years covered.39



Table 2: Summary Statistics Across Tier 1 Datasets

Medians Standard Deviations
Country Workers ∆s ∆ω Disp MRPK Disp. k Disp. ω Volatility
U.S.† 111 0.01 0.00 0.98 1.78 0.63 0.35
Chile 19 0.02 0.00 1.22 1.92 0.54 0.29
France 8 0.02 0.02 1.28 2.04 0.61 0.19
India n.a. 0.06 0.04 1.13 1.61 0.67 0.29
Mexico 141 0.02 0.02 1.40 2.13 0.86 0.39
Romania 5 0.01 0.01 1.38 2.05 0.70 0.39
Slovenia 4 0.07 0.03 1.56 2.51 0.59 0.40
Spain 8 0.03 0.01 1.48 2.00 0.46 0.23
Note: Dispersion MRPK is given by Std(MRPKit), and volatility is Std(ωit − ωit−1) –
i.e., we compute dispersion across the entire dataset. † Median computed for the U.S.
Census data as the average of plants between the 48th and 52nd percentile.
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Table 3: Dispersion MRPK and volatility

Country Coefficient R2 Industry-Year Obs.

U.S. [Plants] 0.76*** 0.47 4,037
(0.04)

U.S. [Firms] 0.68*** 0.44 4,037
(0.07)

Chile 0.54* 0.13 55
(0.29)

France 1.03*** 0.28 167
(0.33)

Mexico 0.19** 0.07 296
(0.07)

India 0.61** 0.28 279
(0.17)

Romania 0.44*** 0.21 126
(0.13)

Slovenia 0.53** 0.09 108
(0.21)

Spain 0.56* 0.35 181
(0.33)

All I 0.55*** 0.67 5,326
(unweighted) (0.15)
All II 0.74*** 0.50 5,326
(weighted) (0.03)

Note: We report the coefficient of a regression of
Stdst (MRPK) against volatility, defined as Stdst(ωit−ωit−1),
including year dummies. Standard errors are clustered at the
industry level. *,**, and *** denote significance at the 10%,
5% and 1% levels respectively. ‘All I’ refers to the unweighted
regression, whereas ‘All II” refers to a weighted regression with
the weights the number of producers in a country-industry-year
observation. These cross-country-industry-year regressions in-
clude year and country dummies, and report standard errors
clustered at the country level. Table OA.15 in the Online Ap-
pendix reports the regression coefficients for the US using only
variation across industries. This is directly related to Figure
2.
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Table 4: Dispersion of MRPK and volatility of TFPR: robustness

Volatility measure
Country Stds[ωit − ωit−1] AR(1) AR(1)FE

U.S. 0.82*** 0.86*** 1.24***
(0.04) (0.07) (0.11)

Chile 1.48* 2.10*** 0.33
(0.65) (0.65) (1.48)

France 1.73*** 1.75*** 2.55***
(0.41) (0.41) (0.61)

India 1.31*** 1.75*** 2.75***
(0.33) (0.39) (0.55)

Mexico 0.39* 0.41** 0.33
(0.17) (0.17) (0.25)

Romania 0.76*** 0.94*** 1.38*
(0.23) (0.36) (0.72)

Slovenia 2.73*** 2.47*** 3.47***
(0.41) (0.41) (0.69)

Spain 1.24*** 1.46*** 2.55***
(0.34) (0.44) (0.59)

Note: We report the coefficient of a regression of
Stdst (MRPK) against alternative measures of volatility,
defined in the text. Standard errors are clustered at the in-
dustry level. *,**, and *** denote significance at the 10%,
5% and 1% levels respectively.
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Table 5: Additional Predictions: MRPK against shocks to TFPR

Country Shock Shock AR1 Shock AR1-FE
U.S. 1.29*** 1.26*** 1.13***

(0.00) (0.00) (0.01)
Chile 1.42*** 1.42*** 1.04***

0.02 0.02 0.02
France 1.37*** 1.37*** 1.26***

(0.01) (0.01) (0.01)
India 1.32*** 1.32*** 1.16***

0.04 0.04 0.04
Mexico 1.07*** 1.07*** 0.67***

0.04 0.04 0.05
Romania 1.31*** 1.31*** 1.12***

(0.01) (0.01) (0.01)
Slovenia 1.65*** 1.64*** 1.48***

0.04 0.04 0.04
Spain 1.28*** 1.28*** 0.69***

(0.01) (0.01) (0.01)

Note: We run, by country, ln(MRPK) against the TFPR
shock, capital, lagged TFPR and year and industry fixed ef-
fects. The TFPR shock is given by ξit ≡ ωit − E(ωit|Iit−1),
where Iit−1 is the information set of producer i at time t−1; de-
pending on the TFPR process we consider this contains lagged
TFPR and producer and year fixed effects. We suppress the
coefficients on capital and lagged TFPR (they are significant
with negative and positive signs, respectively, everywhere) and
also suppress the fixed effects on year and industry. The stan-
dard errors are clustered at the firm/plant-level to account for
serially correlation and heteroskedasticity. *** denotes signif-
icance at the 1 percent level.
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Table 6: Aggregate Implications

Aggregate Moment Coefficient R2 Obs.

Stdst(∆MRPK) [U.S. only] 1.03*** 0.63 4,039
(0.03)

Stdst(∆MRPK) [excl U.S.] 0.56*** 0.64 1,289
(0.07)

Stdst(∆MRPK) [All] 0.89*** 0.68 5,326
(0.04)

Stdst(∆k) [U.S. only] 0.13*** 0.31 4,037
(0.02)

Stdst(∆k) [excl U.S.] 0.07*** 0.62 1,182
(0.02)

Stdst(∆k) [All] 0.12*** 0.76 5,219
(0.02)

Stdst(∆k) [U.S. only] 0.17*** 0.31 4,037
(0.03)

×{>Median Vol.} -0.03**
(0.01)

Stdst(∆k) [excl U.S.] 0.19** 0.63 1,182
(0.09)

×{>Median Vol.} -0.09
(0.06)

Stdst(∆k) [All] 0.17*** 0.76 5,219
(0.03)

×{>Median Vol.} -0.04**
(0.02)

Note: The coefficients are obtained by regressing each aggregate moment
against volatility using country-industry-year variation, where we include
year and country fixed effects. Standard errors are clustered by country
when pooled, and by industry when using U.S. data.
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Table 7: Comparing dispersion of MRPK to other inputs’ MRPs

Input
Country Capital Labor Materials
U.S. 0.81 0.63 0.54
Chile 1.22 0.93 0.48
France 1.25 0.79 0.87
India 1.01 0.87 0.55
Mexico 1.19 0.85 0.51
Romania 1.40 1.17 0.67
Slovenia 1.54 0.98 0.54
Spain 1.45 0.93 0.70

Note: We compute the standard deviation of
the MRP of each input by industry-year, and
we report the average across industry-years by
country.

Table 8: Adjustment Cost Estimates and Moments by Country

Country Adjustment Costs Data Moments on Change in Log Capital
Convex Fixed Less than 5% More than 20% Standard Deviation

U.S. 8.80 0.09 0.39 0.09 0.21

Chile 4.10 0.07 0.19 0.11 0.28
India 3.46 0.12 0.29 0.19 0.30
France 0.21 0.00 0.13 0.57 0.57
Spain 0.74 0.00 0.20 0.41 0.59
Mexico 1.15 0.22 0.08 0.73 0.66
Romania 0.66 0.03 0.08 0.61 0.72
Slovenia 0.35 0.00 0.15 0.52 0.76

Notes: Standard errors were computed using the usual formula for minimum-distance estimators. However, due
to the large size of the datasets we employ, the standard errors are of the order of 1×10−3 or smaller and so we
do not report them. Adjustment costs for Slovenia are based on a model with production function coefficients
set to the mean U.S. coefficients (see the discussion in Section 5.2).
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Table 9: Dispersion in MRPK, S2 measures of model fit by specification

Country Specification
(1) (2) (3) (4) (5)

United States 0.223 0.806 0.806 0.643 0.820

France 0.892 0.702 0.899 0.944 0.651
Chile 0.994 0.983 0.987 0.963 0.785
India 0.984 0.941 0.964 0.976 0.596
Mexico 0.879 0.813 0.883 0.908 0.634
Romania 0.983 0.923 0.817 0.702 0.846
Slovenia 0.967 0.774 0.967 0.984 0.683
Spain 0.718 0.627 0.600 0.530 0.495

All (ex U.S.) 0.879 0.777 0.820 0.800 0.640
All 0.674 0.786 0.816 0.748 0.696

Specification details:

All U.S. adj. costs X X
Own country adj. costs X
All 2x U.S. adj. costs X
1 period time-to-build only X
U.S. avg. β’s X
Industry-country β’s X X X X

Note: The unit of observation is the country-industry. Specifications are: (1) All
countries have the U.S.’s estimated adjustment costs and production coefficients equal
to the U.S. averages across industries; (2) Industry-country specific production co-
efficients (except for Slovenia see Section 3.2), country specific adjustment costs,
industry-country specific AR(1); (3) as for (2), but with the U.S.’s estimated ad-
justment costs for all countries; (4) as for (3), but with twice the U.S.’s estimated
adjustment costs for all countries; and, (5) as for (3), but with zero adjustment costs
(other than the one period time-to-build) for all countries. In all specifications, the
AR(1) is estimated using TFPR computed using the production coefficients used in
the model specification.
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Figure 1: MRPK dispersion and volatility: Model simulation
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Notes: Values used in this simulation are: ε = −4, δ = 10%, β = 1
1+0.065 , βK = 0.12, βM = 0.40, βL =

0.23, CFK = 0.09, CQK = 8.8, λ = 1, µ = 0, ρ ∈ {0.65, 0.85, 0.94} (corresponding to the lines from bottom (0.65)
to top (0.94)), σ ∈ [0.1, 1.4]. We use the means in the U.S. Census Data to get our β’s and use estimates of
adjustment costs for the United States discussed in Section 5.
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Figure 2: Volatility and the dispersion in MRPK: U.S. plant data 1972-97
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Notes: The unit of observation is the industry. The line is generated by an OLS regression on 188 industries,
in which the estimated slope is 0.73 (0.08) and the constant is 0.57 (0.03), and the R2 = 0.3, where the
standard errors are in parenthesis.
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Figure 3: Model Simulation: Dispersion in the change in Capital and Volatility

(a) Adj. costs: (CFK , C
Q
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(b) Adj. costs: (CFK , C
Q
K) = (0.09, 8.8) and (0, 0)

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 

0.1 0.19 0.28 0.37 0.46 0.55 0.64 0.73 0.82 0.91 1 1.09 1.18 1.27 1.36 

S
td

st
(Δ

K
) 

Productivity volatility (σ) 

Notes: Parameters are as for Figure 1. ρ ∈ {0.65, 0.85, 0.94} (corresponding to the lines from bottom (0.65)
to top (0.94), when σ = 0.3)
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Figure 4: Country-level Static misallocation and TFPR volatility

(a) Tier 1 Data
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(b) Tier 2 Data (WBES)
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Note: Circles indicate countries, where circle size for Tier 2 data (Panel (b) is increasing in the number of
firms per country. The bold straight line is the line–of–best–fit (computed using OLS with a constant term).
The horizontal axis indicates the value of the standard deviation of [ωit − ωit−1]. The vertical axis indicates
the standard deviation in MRPK). The regression line for Panel (a) is given by: 1.01 (0.23)+1.02(0.66)*vol
with a R2 of 0.28. The regression line for Panel (b) is given by: 0.78 (0.10)+0.67 (0.21)*vol with R2 of 0.31,
where standard errors are given in parentheses, and ‘’vol” denotes our measure of volatility.
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Figure 5: Country-level MRPK dispersion: Data vs model simulation
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Notes: The vertical axis is data, while the horizontal axis is the model prediction. The unit of observation
is the country. Predictions are computed at the industry-country level and then aggregated to the country
level. Black dots are tier 1 countries. Unfilled circles are countries in the WBES data. All predictions use
industry-country specific production coefficients, a country-level AR(1) process and the adjustments costs
estimated for the U.S. in Section 5. The S2 for the World Bank countries is 0.802 and is 0.906 for the Tier
1 countries. The solid line is the 45◦ line.
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Appendix

A Proof of Invariance to Fixed Effects in Pro-

ductivity Process

Theorem 1 Consider the dynamic optimization problem described by the Bellman
equation:

V (Ω,K) = max
I,M,L

S(Ω,K, L,M)− pLL− pMM − C(I,K,L,M,Ω)

+ β

∫
Ω′
V (Ω′, δK + I)f(dΩ′|Ω).

(21)

Let f(Ω′|Ω) be described by one of the following processes:
(A) ωit+1 = µi + ρωit + σεit; and
(B) ω̃it+1 = µ̃i + ρω̃it + σεit.

Then, for any µi and µ̃i,
i. (sit − xit|µi) = (sit − xit|µ̃i); and

ii. (xit − xit−1|µi) = (xit − xit−1|µ̃i), where x ∈ {l,m, k}.

Proof. The proof proceeds by: First, showing that changing the constant in the AR(1)
amounts to a level shift in the AR(1) process; then, Second, showing that the entire
problem is homogenous of degree 1; then, Third, using this to show that changing the
AR(1) constant results in a level shift in the inputs; Lastly, we note that these level
shifts get cancelled out when computing differences at the firm level. We use a series
of lemmas to develop this reasoning.42

Lemma 1 Consider two processes (A) and (B), above. Process (B) is a level shift
of process (A). That is, conditional on initial conditions and the history of εit, ω̃it =
ωit + log Λ where (1− ρ) log Λ = µ̃i − µi.

Proof. Starting with process (A), increase ωit by log Λ. Now, consider the evolution
of process (B) from ωit + log Λ:

ω̃it+1 = µ̃i + ρ (ωit + log Λ) + σεit
= µi + (1− ρ) log Λ + ρ (ωit + log Λ) + σεit
= µi + log Λ + ρωit + σεit
= ωit+1 + log Λ

Hence, process (B) is a level shift of process (A).

Lemma 2 A process determining the evolution of Ω̃, where log Ω̃ = ω̃, described by (B)
is isomorphic, in terms of realizations of random variables, to a process determining
ΛΩ where the process describing the evolution of Ω is (A).

42In both the theorem and proof, unless noted otherwise, variable definitions and notation follows that
used in the paper.
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Proof. This is a corollary of Lemma 1.

The rest of the proof employs a transformation of the problem.43 Let

G1−a−b−c
it = Ωit, and (1− a− b− c) git = ωit

.
since this is a bijective mapping, we can rewrite the TFPR process as

(1− a− b− c) git+1 = µi + ρ (1− a− b− c) git + σεit (22)

and the sales function as

Sit = G1−a−b−c
it Ka

itL
b
itM

c
it

This transformation will allow us to exploit homogeneity properties in a transparent
manner. To keep notation consistent, but distinct, let λ1−a−b−c = Λ. Note that:

Lemma 3 (Sales) λSit (Git,Kit, Lit,Mit) = Sit (λGit, λKit, λLit, λMit)

Before proceeding to the homogeneity of the value function, it is helpful to establish
that the static inputs, L and M , under processes (A) and (B) are (multiplicative) level
shifts of each other. This makes it easier to state subsequent Lemmas and manipulate
the value function.

Lemma 4 If L∗it and M∗it are solutions to the system of first order conditions of static
inputs, given Git and Kit; then, given λGit and λKit, λL∗it and λM∗it are solutions.

Proof. It is sufficient to show that this is true for labor. As established in the paper,
the first order condition is

bSit (Git,Kit, L
∗
it,M

∗
it)

L∗it
= pL (23)

Now, we need to show that, given λGit and λKit, λL∗it and λM∗it solve the first
order condition.

bSit (λGit, λKit, λL
∗
it, λM

∗
it)

λL∗it
=

bλS (Git,Kit, L
∗
it,M

∗
it)

λL∗

=
bSit (Git,Kit, L

∗
it,M

∗
it)

L∗
= pL

where the first equality follows from Lemma 3, and the last from equation (23) . Hence,
λL∗it and λM∗it solve the first order condition.

Lemma 4 allows us to express everything that follows as functions of G and K (and
I), noting that, where relevant, a proportional increase in both leads to a equivalent
proportional increase in L and M . Note, in particular, that we can re-write the Bellman
equation as

V (G,K) = max
I
π(G,K)− C(G,K, I) + β

∫
G′
V (G′, δK + I)φ(dG′|G). (24)

43Bloom (2009) employs a similar transformation (at footnote 25).
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We now turn to establishing the homogeneity properties of the various components
of the Bellman equation, stated in Theorem 1.

Lemma 5 (Period Profits) Given π (Git,Kit) = Sit (Git,Kit, L
∗
it (Git,Kit) ,M∗it (Git,Kit))−

pLL
∗
it (Git,Kit)− pMM∗it (Git,Kit), then, π (λGit, λKit) = λπ (Git,Kit).

Lemma 6 (Capital Transition) λKit+1 (Kit, Iit) = Kit+1 (λKit, λIit)

Lemma 7 (Adjustment Costs) λCit (Git,Kit, Iit) = Cit (λGit, λKit, λIit)

Lemma 8 (TFPR Transition) Let process (B) be written in terms of g such that

(1− a− b− c) git+1 = µi + (1− ρ) (1− a− b− c) log λ+ ρ (1− a− b− c) git + σεit

and let the associated distribution describing the transitions of G be φ(B) (Git+1|Git).
Similarly, let (A) be written as in equation 22 and let the associated distribution de-
scribing the transitions of G be φ(A) (Git+1|Git). Then, fixing Git and Git+1,

φ(B) (λGit+1|λGit) = φ(A) (Git+1|Git)

Proof. This follows from Lemma 1 and 2, noting that λ1−a−b−c = Λ.

We now turn to the value function, as defined in equation (24). Let V(A) (G,K)
be the value function when the TFPR process is described by (A). Similarly, let
V(B) (G,K) be the value function when the TFPR process is described by (B). That
is,

V(B) (G,K) = max
I
π(G,K)− C(G,K, I) + β

∫
G′
V(B)(G

′, δK + I)φ(A)(dG
′|G).

Lemma 9 (Value Function) For any G and K, V(B) (λG, λK) = λV(A) (G,K)

Proof.
We begin by defining I∗(A)(G,K) as the optimal investment policy corresponding to

V(A) (G,K). We next define W(A) (G,K, I) as the choice specific value function under
process (A). That is, W(A) (G,K, I) is the value generated when investment in the
current period is set at I, rather than I∗(A) (G,K). So,

W(A) (G,K, I) = π(G,K)− C(G,K, I) + β

∫
G′
V(A)(G

′, δK + I)φ(A)(dG
′|G). (25)

W(B) (G,K, I) is defined analogously.
The proof proceeds by assuming that the future value function, V(B)(G′, δK + I),

satisfies the Lemma, and showing that this implies that W(B) (G,K, I) has the same
property. We then show that this, in turn, implies that the present value function,
V(B)(G,K), satisfies the Lemma. Hence, in a stationary context, the proof exploits an
inductive argument.
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First, assume V(B)(λG′, λ (δK + I)) = λV(A)(G′, δK + I). Now,

W(B) (λG, λK, λI) = π(λG, λK)− C(λG, λK, λI) + β

∫
λG′

V(B)(λG
′, δλK + λI)φ(B)(dλG

′|λG)

next, from Lemma 8:

= π(λG, λK)− C(λG, λK, λI) + β

∫
G′
V(B)(λG

′, δλK + λI)φ(A)(dG
′|G)

then, from Lemmas 5, 6, and 7, and the maintained assumption:

= λπ(G,K)− λC(G,K, I) + λβ

∫
G′
V(A)(G

′, (δK + I))φ(A)(dG
′|G).

= λW(A) (G,K, I)

Next, we show that this implies that the present value function, V(B)(G,K), satisfies
the Lemma. First note that if I∗(A) (G,K) = arg maxIW(A) (G,K, I) then λI∗(A) (G,K)
solves arg maxIW(B)(λG, λK, I) since W(B) (λG, λK, λI) = λW(A) (G,K, I). Next,

V(B) (λG, λK) = max
I
W(B) (λG, λK, I)

= W(B)

(
λG, λK, λI∗(A) (G,K)

)
= λW(A) (G,K, I∗ (G,K))
= λV(A) (G,K)

Thus V(B)(λG, λK) = λV(A)(G,K).

Lemma 10 Let {εit}∞t=0 be a path of realizations of εit and let gi0 and Ki0 be the
initial conditions of g and K under process (A) and gi0 + λ and λKi0 be the initial
conditions under process (B). Then, if {Kit}∞t=0 is the path of capital under process (A)
then {λKit}∞t=0 is the path under process (B).

Proof. This follows from Lemmas 1 and 8, and Lemma 9. As before, let I∗ (G,K)
be the investment policy under process (A). Now, consider the optimal investment
problem under process (B) with capital state λK.

From Lemma 9 we know that λI∗(A) (G,K) = I∗(B) (λG, λK). That is, if I∗(A) (G,K)
is the solution when λ = 0 (i.e. process (A)), then λI∗(A) (G,K) is the solution when
λ > 0 (i.e. process (B)). Hence, under process (B), the path of the capital stock is a
level shift of that under process (A). That is, if {Kit}∞t=0 is the path of capital under
process (A) then {λKit}∞t=0 is the path under process (B).

Together, Lemmas 3, 4 and 10 allow us to compare std (sit − xit) and std (xit − xit−1)
under processes (A) and (B). Holding all else constant, if sit, xit and xit−1 are the real-
izations under (A), then sit+ log(λ), xit+ log(λ) and xit−1 + log(λ) are the realizations
under (B). Since constants will be cancelled out in the computing of differences, the
theorem is established.
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B Data Appendix

We employ multiple datasets in our analysis. We classify these datasets into two tiers,
shown in Table 1. Tier 1 consists of country-specific producer-level data from eight
countries: the United States, Chile, France, India, Mexico, Romania, Slovenia, and
Spain. Each of these data sets has been used extensively in the literature; most com-
monly in the analysis of productivity.44 Tier 2 consists of the World Bank Enterprise
Survey (WBES). We discuss the details of each dataset below. For a description of the
measurement of productivity see Section 3.2.

B.1 United States

The data for the United States comes from the U.S. Census Bureau’s Research Data
Center Program. We use data on manufacturing plants from the Census of Manufac-
turers (henceforth, CMF), and the Annual Survey of Manufacturers (henceforth, ASM)
from 1972 to 1997.45 The CMF sends a questionnaire to all manufacturing plants in the
United States with more than 5 employees every five years, while the ASM is a four-
year rotating panel with replacement, sent to approximately a third of manufacturing
plants, with large plants being over-represented in the sampling scheme.

Labor is measured using the total number of employees at the plant. Materials are
measured using total cost of parts and raw materials.

Capital is constructed in two ways. For the majority of plants, including all plants
in the CMF, capital is measured using a question on total assets – be they machines
or buildings – at the plant. For the remaining observations, capital is constructed
using the perpetual inventory method, using industry-specific depreciation rates and
investment deflators from the Bureau of Economic Analysis and the National Bureau
of Economic Research. Capital, materials and sales are deflated using the NBER-CES
industry-level deflators into 1997 dollars.

The original dataset has approximately 3 million plants. However, only 1.8 million
of these have sufficient; i.e. – non-zero and non-missing, data on sales, labor, capital
and materials, required to construct productivity. Out of these, we keep plant-years
for which we have observations in consecutive years, which allow us to measure changes
in productivity. There are several industries (measured by the four-digit SIC code),
which have a small number of plants. We drop industries which either: a) have less
than 50 plants in any given year, or b) with less than 1,000 plants over the entire
sample period. The omission of these small-plant-number industries has little effect on
our estimates, and they represent a limited number of plants in the data; but dropping
these small plant-number industries is essential for the disclosure of our results. The
final dataset has 735,342 plants over a 26 year period.

B.2 Chile

Annual plant-level data on all manufacturing plants with at least ten workers were pro-
vided by Chile’s Instituto Nacional de Estadistica (INE). These data, which cover the
period 1979-1986, include production, employment, investment, intermediate input,
and balance-sheet variables. The data were prepared for analysis by INE: standard-
ization of variable definitions across years, identification of entering and exiting plants

44See, for instance, Tybout and Westbrook (1995), Roberts (1996), Pavcnik (2002), Rankin, Söderbom,
and Teal (2006), Van Biesebroeck (2005), De Loecker and Konings (2006); De Loecker (2007), Goldberg
et al. (2009), Bloom, Draca, and Van Reenen (2011), Konings and Vandenbussche (2005).

45We use a version of these files that has been processed for productivity analysis by the staff at the Center
for Economic Studies at the U.S. Census Bureau, and more information on the construction of this data can
be found in the productivity database files at Census.
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and adjustment for inflation distortions, and construction of capital stock variables.
Industries are classified according to the four digit ISIC industry code.

Output and input price indices are constructed at the three digit industry and
obtained directly from average price indices produced by the Central Bank of Chile.
Data on nominal and real values of the various capital goods are reported, including
buildings, machinery, furniture, vehicles and others, and allow the construction of price
deflators. We directly observe total number of employees, total real value of production,
total real intermediate input, total real book-value of fixed assets, total real salaries. In
total there are 37,600 plant-year observations reporting employment, with a minimum
of 4,205 plants in 1983 and 5,814 plants in 1979.

The data were generously provided by Jim Tybout through a license at the Interna-
tional Economics Section of Princeton University. See Pavcnik (2002) for a productivity
study using these data.

B.3 France, Romania and Spain

Annual firm-level data on manufacturing firms for France, Romania and Spain are
obtained from Bureau Van Dijck’s (BvD) Amadeus dataset and cover firms reporting
to the local tax authorities and/or data collection agencies for the period 1999-2007.
We selected three relatively large European countries at different stages of economic
development. The coverage for all three countries is substantial in that we cover ap-
proximately 90 percent of economic activity in each of the three manufacturing sectors.
For example, for France, in 2000, we record total sales of 739 billion Euros, whereas the
OECD reports total sales to be 768 billion Euros. This implies coverage of 96 percent
of total economic activity in manufacturing. For Spain we find, using the same cover-
age calculation, coverage of 88 percent. The collection protocol of BvD is consistent
across countries. We focus on the manufacturing sector to facilitate the measurement
of productivity.

The data include standard production data where we observe Total Operating Rev-
enue (production), Total Number of Employees (employment), Total Material Costs
(intermediate input), Total Costs of Employees (wagebill), Total Fixed Assets and all
the subcomponents of the capital stock such as Buildings, Furniture, Vehicles, Equip-
ment and Others, as well as other standard income statement and balance-sheet vari-
ables. The data also provide information on the firm’s legal status, whether the firm
is active and its consolidation code. We use this information to make sure we only in-
clude firms actively producing in a specific industry and only use their unconsolidated
accounts to for instance avoid including total sales of a multinational across affiliates
located in different countries. This data is known to slightly under-represent small
firms due to the threshold on either firm size or total number of employees (see Table
1 above).46

Industries are classified according to the two digit NACE Rev 1.1. code for all three
countries. Our data covers sectors firms primarily active in sectors NACE Rev 1.1. 15
to 36.

The manufacturing sector in each country leaves us with 391,422, 174,435 and
457,934 firm-year observations for France, Romania and Spain. Two digit NACE
rev.1.1. industry producer prices are used to deflate all nominal values and are down-
loaded from EUROSTAT’s online statistics database.47

Access to Bureau Van Dijck’s Amadeus was obtained through Princeton Univer-
sity’s Library license. For recent work drawing on the AMADEUS data see Bloom,
Draca, and Van Reenen (2011) and the discussion therein.

46In Table OA.5 in the Online Appendix we verify that our results are invariant to imposing a common
threshold across all our datasets.

47See http://appsso.eurostat.ec.europa.eu/nui/setupModifyTableLayout.do. The data are found
under “Industry, trade and services> Short-term business statistics > Producer prices in industry”.
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B.4 India

Annual firm-level data on manufacturing firms were provided by Prowess, and are
collected by the Centre for Monitoring the Indian Economy (CMIE). Prowess is a
panel that tracks firm performance over time. These data cover the period 1989-2003
and contain mainly medium and large Indian firms.

Industries are classified according to the NIC classification code (India’s industrial
classification system) and firms report the principal industry activity at the four digit
PNIC level.

These data include various production, employment, investment, intermediate in-
put, and balance-sheet variables. In particular we observe Total Sales, Total Material
Costs, Total Fixed Assets and Total Wage-bill. The data reports both product-level
sales and total sales. We aggregate product-level sales to the firm level. The Indian
data does not report the wage-bill separate from the number of workers. We do, how-
ever, take care to appropriately deflate the wage-bill. All nominal values are converted
to real values using a two digit producer prices. In total there are 30,709 firm-year
observations reporting a wage-bill, and there are 4,154 firms active throughout the
sample period.

The data are used in Goldberg, Khandelwal and Pavcnik (2011) and were bought
under a license by Goldberg, Khandelwal and Pavcnik. For recent work using the same
data in the context of production function estimation see De Loecker et al. (2012), and
more details on the data are discussed therein.

B.5 Mexico

Annual plant-level data on manufacturing plants are recorded by Mexico’s Annual In-
dustrial Survey and are provided by Mexico’s Secretary of Commerce and Industrial
Development (SEC-OFI). The sample of plants (the 3200 largest manufacturing firms)
represents approximately eight percent of total output, where the excluded plants are
the smallest ones. For each plant and year we observe the usual data on production, in-
put use, investment, inventories, and costs, as well as industry codes and plant identity
codes that allow us to track establishments over time.

Industries are classified according to the Mexican Industrial Classification (a four
digit industrial classification system).

These data, which cover the period 1984-1990, include production, employment,
investment, intermediate input, and balance-sheet variables. In particular we use Total
Value of Output, Total Employment, Total Material Costs and Total Fixed Assets.
SECOFI also provided price indices at the industry level for output and intermediate
inputs, and sector-wide deflators for machinery and equipment, buildings, and land,
which we used to convert all nominal values to real values. In total there are 21,180
plant-year observations reporting employment, with a minimum of 2,958 plants in 1989
and 3,175 plants in 1984.

The data were generously provided by Jim Tybout through a license at IES Prince-
ton University. Tybout and Westbrook (1995) contains more details and contains an
application to productivity analysis.

B.6 Slovenia

The data are taken from the Slovenian Central Statistical Office and are the full com-
pany accounts of all firms operating in the manufacturing sector between 1994 and
2000. The original accounting data for the period between 1994 and 2002 was pro-
vided by AJPES (Agency of the Republic of Slovenia for Public Legal Records and
Related Services).

We have information on 7,915 firms: an unbalanced panel with information on
production, employment, investment, intermediate input, and balance-sheet variables.
In particular we observe: Total Sales, Total Material Costs, Total Fixed Assets, Total
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Cost of Employees and Total number of employees. All monetary variables are recorded
in Slovenian Tolars and have been deflated using the consumer price index (for data
relating to capital stock) and a producer price index (at the 2-digit NACE industry
level). In total there are 29,058 firm-year observations reporting employment, with a
minimum of 3,355 in 1994 and a maximum of 4,788 firms in 2000. The sharp increase
in the number of firms, unlike in datasets with thresholds on firm size, reflects the
sharp growth of Slovenia and the manufacturing sector in particular. See for example
De Loecker and Konings (2006) for a discussion on the entry of de novo firms during
the transition period – which is covered in our sample period.

Industries are classified according to the two digit NACE Rev 1.1. code for all three
countries. Our data covers sectors firms primarily active in sectors NACE Rev 1.1. 15
to 36.

We would like to thank Joze Damijan at Ljublijana University for sharing the data.
We refer the reader to De Loecker and Konings (2006) and De Loecker (2007) for more
on the data, and an application to production function estimation.

B.7 World Bank Data

The World Bank Enterprise Research Data were collected by the World Bank across
41 countries and many different industries between 2002 and 2006. Standard output
and input measures are reported in a harmonized fashion. In particular, we observe
sales, intermediate inputs, various measures of capital, and employment, during (and
covering up to) a three-year period, which allows us to compute changes in TFPR and
capital. Out of the 41 countries in the data, 33 have usable firm-level observations.
This is primarily because, for many years and countries, the World Bank did not collect
multi-year data on capital stock. Table B.1 lists the countries we are able to use,
together with the number of observations on each country. The data are available from
http://www.enterprisesurveys.org, accessed on December 15th, 2010. Extensive
documentation is available from the same website.

The survey documentation describes the sampling universe as follows: “6. The
population of industries to be included in the Enterprise Surveys and Indicator Surveys,
the Universe of the study, includes the following list (according to ISIC, revision 3.1):
all manufacturing sectors (group D), construction (group F), services (groups G and
H), transport, storage, and communications (group I), and subsector 72 (from Group
K). Also, to limit the surveys to the formal economy the sample frame for each country
should include only establishments with five (5) or more employees. Fully government
owned establishments are excluded as the Universe is defined as the non-agricultural
private sector.”48

The survey used a stratified sampling procedure, in which firms were sampled ran-
domly within groups based on the firm’s sector of activity, firm size, and geographical
location. The structure of the sampling leads to an oversampling of larger firms (rel-
ative to random sampling of all firms in the economy). The exact structure of the
stratification varies by the size of the economy in question. We have chosen to not do
any sampling correction, preferring to maintain as much transparency as possible as to
the mapping from data to findings, being mindful of the fact that we can use data from
only 7 percent of the sampled firms in any case and, most importantly, considering the
absence of a well-defined criterion that could be used to guide any such correction. In
any case, the results in the paper are robust to controlling for differences in the size
and industrial composition of firms across countries.

The firms in the data are drawn from the manufacturing, construction, services, and
transport, storage, and communications sectors. As would be expected, the precise
industry composition (defined at the two-digit ISIC level) varies by country. The
majority of firms within a country were surveyed in the same year. The survey asked
questions about activity in the current year and the previous two years. Thus, the

48From page 3 in ‘Enterprise Survey and Indicator Surveys Sampling Methodology’ August 29th, 2009 at
http://www.enterprisesurveys.org/Documents/Sampling_Note.pdf downloaded 23 April, 2011.
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panel-data aspect of these data, relating to activity in year t − 1, comes from the
recollections and records of managers in year t.

To construct data on TFPR and the change in TFPR we need two years of infor-
mation on sales, assets, intermediate inputs and employment. 5,558 firms across our 33
countries meet this criterion.49 For some of the countries in the World Bank Enterprise
Data, a number of issues emerged in the calculation of TFPR. In particular, labor use
is typically reported as the number of employees or a wage bill converted to the number
of employees with no correction for hours worked. Moreover, sales and gross output
data are not corrected for inventories, and the capital stock is based on book values.
These are standard data restrictions researchers face using this type of data.

Sales are directly measured in the data. Hence, for many firm-years in the data, we
can compute TFPR directly. However, for some firm-years, we observe only the firm’s
wage bill and not the number of workers. To address this issue, we use the median
country-industry wage, w̃, (imputed from observations with both the wage bill and the
number of workers) as a deflator and apply it to the wage bill to give a measure of
labor. That is, to compute Lit we use Lit = wLit

w̃ . In what is presented in this paper,
we use this measure for all firm-year observations. Finally, we rely on the book value
of capital as measured by either total assets or net book value. We experimented with
both measures and our results are invariant. When we consider a measure of value
added, we compute it by netting the sales variable from the use of intermediate inputs.

Finally, we convert all relevant variables into real values using detailed producer
price and input price deflators where available. For the 33 countries covered in the
World Bank data, we rely on the World Bank deflators to convert all monetary vari-
ables into USD. To do this, we use the World Bank’s measure of purchasing power
parity (PA.NUS.PPP). Note that we account for differences in the rate of inflation
across countries by using a year-specific measure of PPP. Since TFPR is a ratio, these
PPP conversions get netted out in many specifications, but they are useful when, for
instance, we use controls for firm size.

While there are over 41,000 observations in the data, only 5,558 have information
on capital over several years, which is needed to compute TFPR volatility. Table B.2
presents summary statistics of the data, where for each variable, the first line refers
to the data that we use, while the second presents the data that we dropped due to
insufficient information to compute changes in TFPR.50 The dropped observations are
usually smaller firms with lower sales and fewer employees. However, changes in inputs
(such as changes in capital or labor) are comparable across the data we did and did not
use. Notice that the dispersion of TFPR is similar between the two data sets, with a
standard deviation of 1.0 (our data) versus 1.2 (dropped data), as well as the dispersion
of the sales to capital ratio which is 1.1 (our data) versus 1.3 (dropped data). Thus,
the sampling bias will slightly understate the level of TFPR and MRPK dispersion,
but this effect is small relative to the large differences in dispersion across countries.

49We also drop countries with fewer than 25 observations. This has little effect on our results.
50Summary statistics, analogous to Table 2, can be found in Table OA.1 in the Online Appendix.
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Table B.1: Countries in the World Bank data sample

Region Country Std.(MRPK) Firms

North Africa
Morocco 0.75 376

Sub-Saharan Africa
Benin 0.81 66
Ethiopia 1.31 211
Madagascar 0 .93 84
Malawi 1.03 125
Mauritius 1.49 52
South Africa 1.29 199
Tanzania 1.65 58
Zambia 0.82 157

Central Asia
Kyrgyzstan 0.53 94
Tajikistan 0.87 94
Uzbekistan 0.89 92

Middle East
Syria 1.13 55

South Asia
Bangladesh 1.28 134
Sri Lanka 0.96 114

South East Asia
Indonesia 1.53 426
Philippines 1.06 278
Thailand 0.75 214
Vietnam 0.95 448

Central America
Costa Rica 1.22 273
Ecuador 1.51 109
El Salvador 0.95 190
Guatemala 0.95 162
Honduras 1.10 203
Nicaragua 1.14 222

South America
Brazil 1.00 85
Chile 1.40 745
Guyana 2.37 29
Peru 0.85 31

Europe
Moldova 0.94 72
Lithuania 1.37 66
Poland 0.58 63
Turkey 1.87 36
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Table B.2: Selection Bias due to Missing Data in World Bank Data

Variable Mean Std. Dev. N
Log Sales 7.0 3.1 5579

6.7 3.3 51043
Log Value Added 6.0 3.1 4719

5.9 3.3 42230
Log Materials 6.4 3.3 5579

5.2 3.5 46642
Log Capital 6.9 3.1 5579

7.5 3.0 12728
Log Labor 5.2 2.9 4715

4.8 3.1 23696
Workers 284 874 5579

145 1010 50891
Productivity 2.3 1.0 5579

2.4 1.2 4750
Sales to Capital Ratio 0.1 1.1 5579

0.2 1.3 12528
Sales to Labor Ratio 2.9 2.2 5579

3.1 3.2 37918
Change in Capital 0.1 0.5 5579

0.1 0.5 11268
Change in Labor 0.2 0.7 4626

0.1 0.6 14360
Change in the Sales to Capital Ratio 0.0 0.7 5579

0.0 0.7 11017
Note: The first row shows the data used in the paper, and the
second row indicates data that we dropped due to some missing
observation.
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C Model Computation

The parameters we use are found in Table C.1. Parameters for the elasticity of demand,
depreciation rate, and discount rate follow those adopted by Bloom (2009). The last
set of parameters we need to fix are the σ, ρ and µ terms in the AR(1) process, which
governs the evolution of productivity over time. We compute the model for values
of σ between 0.1 and 1.4, which covers the range we observe in data. For ρ we pick
three values, 0.65, 0.85 and 0.94. Lastly, we set µ = 0. We also implicitly normalize
the prices of non-capital inputs by setting λ = 1. More precisely, what we are are
normalizing is λ, a function of these non-capital input prices. The functional form of
λ puts structure on the relative prices of non-capital inputs. Subject to this structure,
normalizing λ is equivalent to a normalization of one of the non-capital input prices.

Table C.1: Simulation parameters

Parameter Comments

ε = −4
δ = 10%
β = 1

1+6.5%

 Values also used in Bloom (2009).

βK = 0.12
βM = 0.40
βL = 0.23

 Mean values in U.S. Census Data.

CFK = 0.09
CQK = 8.8

}
Estimated using U.S. Census Data,
see Section 5.1.

ρ ∈ {0.65, 0.85, 0.94}
σ ∈ [0.1, 1.4]

}
Selected to fall within range of esti-
mated values for the U.S. Census.

λ = 1 Scaling parameter that normalizes
the price of non-capital inputs.

µ = 0 Normalization that has no effect on
computed moments, by Theorem 1.

We compute the optimal investment policies for the value function in equation (9).
We solve this model using a discretized version of the state space (Ωit,Kit). Specifically,
we use a grid of capital states ranging from log capital 3 to log capital equal to 20, in
increments of 0.03. Moreover, we use a grid of productivity with 30 grid points, whose
transition matrix and grid points are computed using Tauchen (1986)’s method. The
model is solved using policy iteration with a sparse transition matrix (since there are
17,000 states). Using the computed optimal policies, we simulate the evolution of a
country, or industry, for 10,000 firms over 1,000 periods. We use the output from the
1,000th and 988th periods to compute the reported results (corresponding to years t
and t− 1; recall that we interpret a period as a month).
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