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Abstract

The behavior of artificial intelligence (AI) algorithms is shaped

by how they learn about their environment. We compare the prices

generated by AIs that use different learning protocols when there is

market interaction. Asynchronous learning occurs when the AI only

learns about the return from the action it took. Synchronous learn-

ing occurs when the AI conducts counterfactuals to learn about the

returns it would have earned had it taken an alternative action. The
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two lead to markedly different market prices. When future profits are

not given positive weight by the AI, (perfect) synchronous updating

leads to competitive pricing, while asynchronous can lead to pricing

close to monopoly levels. We investigate how this result varies when

either counterfactuals can only be calculated imperfectly and/or when

the AI places a weight on future profits.
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Based Equilibrium, Bertrand, Repeated Games, Learning in Games, Collu-
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1 Introduction

Firms increasingly delegate their pricing to algorithms that exploit detailed

data on customers’ preferences and, in some instances, use a learning process

to develop strategies to play an oligopolistic pricing game in the presence

of competitors.1 Artificial intelligence algorithms (AIs) provide a prominent

approach to implementation. AIs operate by learning about the returns

to taking feasible actions, and then performing the action that they have

learned works best. The embedded learning process is at the heart of how an

AI performs. This paper shows that when pricing decisions are delegated to

AIs the way in which AIs learn can have an economically significant impact

on the pricing outcomes realized in the market.

This paper focuses on reinforcement learning. Reinforcement learning is

a common way to implement an AI.2 In reinforcement learning each action

at each state is given a value. Learning occurs by updating these values from

the information gathered by the AI during the course of play. The optimal

action at each state is the one with the highest value.3

For clarity, our initial focus is on two learning protocols that lie at op-

posite extremes in terms of the information that they leverage. Consider a

1See, for instance, the discussions in Chen (2016), Competition and Markets Authority
(2018), Derakhshan et al. (2016), Brown and MacKay (2020), Assad et al. (2020) and
Calvano et al. (2020).

2See, for instance, Sutton and Barto (2018).
3As discussed later, there are a wide range of ways to implement this broad-brush

approach. An early, seminal discussion can be found in Watkins and Dayan (1992). Sutton
and Barto (2018) provide a contemporary treatment.
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market interaction in which Firm A charges $7 and its rival, B, charges $8.

The first learning approach we investigate, asynchronous learning, allows the

AI to learn only from actions that are actually taken. So, in the two firm mar-

ket above, all the AI can learn from is the profit that it realizes from charging

$7.4 The second learning approach we investigate, perfect synchronous learn-

ing, allows the AI to conduct counterfactuals to assist learning. When an

AI uses perfect synchronous learning, it observes its own profit and that the

rival charged $8, and it can construct the counterfactual profit that would

have arisen had it chosen $6, or any other feasible price.

Synchronous learning (whether perfect or otherwise) requires some under-

standing of the underlying economic environment.5 In the implementation

discussed above, constructing accurate counterfactuals requires an under-

standing of demand conditions, competitors’ prices, and the market clearing

rule. Asynchronous learning requires no understanding of any of this. An

AI using asynchronous learning needs no information other than the action

it took and the profit it realized.

The influence of these different learning protocols on pricing outcomes

can be seen in figure 1. Figure 1 shows prices in a market in which two AIs

4Quite literally, the information that is leveraged is the action (charging $7) and the
realized profit (π($7)). No other information is used in updating the values attached to
actions (i.e., learning).

5We call an updating protocol synchronous if it allows the AI to update the return from
playing prices other than the price actually paid. Perfect synchronous updating assumes
that the AI can compute these counterfactuals perfectly (as in the example in the preceding
paragraph). Other implementations, like the synchronous using downward demand version
discussed in this paper, may use approximations or bounds to guide updating.
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Figure 1: Price paths with different algorithm designs

0

1

2

3

4

5

6

7

8

9

10

1

25
0

50
0

75
0

10
00

12
50

15
00

17
50

20
00

22
50

25
00

27
50

30
00

32
50

35
00

37
50

40
00

42
50

45
00

47
50

50
00

P
ri

ce

Time (# of periods of learning)

Synchronous AIA

Asynchronous AIA

Notes: The median price (vertical axis) across 100 simulated runs by period (horizontal axis) is shown for firm 1, in a

static Bertrand market in which two firms are selling homogeneous goods. The model is parametrized as follows. Market

demand is Q = 1 if P ≤ 10, zero otherwise. Marginal cost = 2. There are 100 feasible prices equally spaced between 0.1

and 10 inclusive. Firms put a zero weight on future profits. The model is parametrized as per figure 2. See notes therein

for further details.

sell products that are perfect substitutes in Bertrand competition. The AIs

do not care about future profits. Marginal costs are constant and equal to

2. Nash equilibrium prices are just above marginal costs (just above due

to the discreteness in the set of feasible prices). The monopoly price is 10.

When both AIs employ perfect synchronous learning, they converge to Nash

pricing quickly. By contrast, when both AIs employ asynchronous learning

they converge to prices that are substantially above marginal costs.

This paper endeavors to explain why this difference in outcomes occurs
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and evaluates the extent to which it is a general feature that is robust across

a variety of environments. In doing so it seeks to contribute to the growing

discussion in the economics, legal, and policy literatures on the impact of the

adoption of AI pricing algorithms on the competitiveness of markets.6

We focus on the two extreme cases of asynchronous and perfect syn-

chronous learning in order to make the pricing implications of learning pro-

tocols from AI pricing algorithms transparent. Much of the academic lit-

erature on AI pricing algorithms uses asynchronous updating.7 This seems

at odds with how we would expect an AI pricing algorithm to operate in a

real market setting as it ignores information which likely would be viewed as

helpful.

Even a simple shopkeeper who sees the demand generated at a given price

realizes that this has implications for the demand that would be realized at

alternative prices. The process of inferring what demand would have been

at alternative prices is a synchronous updating process. The precision of

the shopkeeper’s estimates of demand at alternative prices would depend on

the information available on the underlying demand system and on whether

6The policy and legal debates are moving faster than the economic literature. On the
policy side see Competition and Markets Authority (2018), OECD (2017), Sims (2017),
and Federal Trade Commission (2018). All these references discuss algorithms, and AI
in particular, as potentially facilitating collusive outcomes. Margrethe Vestager, the EU
Commissioner for Competition, commented in 2018 that “The challenges that automated
systems create are very real ... If they help companies to fix prices, they really could make
our economy work less well for everyone else” (quoted in Hirst (2018)). For commentary
see Harrington (2018), Schwalbe 2018, Assad et al (2021), and Veljanovski (2022).

7This is often referred to as “Q-learning.” However in the machine learning (or AI)
literature, Q-Learning tends to have a broader meaning that subsumes both asynchronous
and synchronous leaning. See, for instance, Watkins and Dayan (1992).
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competitors’ prices are observed. However, even an understanding that the

demand function is downward sloping informs perceptions about the values of

taking different actions and, as we confirm in section 5.1, can have dramatic

effects on realized prices. We expect that a sophisticated AI pricing algorithm

would ‘understand’ that demand slopes downward as well. As a result, the

view we take in this paper is that actual AI pricing algorithms live on a

spectrum with perfect synchronous and asynchronous algorithms at either

end, and that the position of any algorithm on the spectrum is determined

by the willingness of the firm to invest in algorithmic design, the access the

algorithm has to data, and the ability the algorithm provides managers to

chose alternative algorithmic settings.

The basic model, a simple Bertrand setting, with two identical firms

selling identical goods, is briefly described in section 2. A more formal de-

scription of the mechanics of the reinforcement learning algorithm that we

investigate makes up the rest of that section. A core result, expanding on

figure 1 above, is contained in section 3. There the full set of computational

results for this base case is provided. These results mirror those in figure 1 -

when the future has no value (the discount factor, β = 0); i.e., asynchronous

updating leads to supra-competitive pricing while perfect synchronous up-

dating does not. The computational results delve deeper into why this is the

case.

The asynchronous result is a function of how the algorithm updates the

value of the action taken. In a market with competing AI pricing algorithms,
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both will choose to play the same action in a period if that action is perceived

to have the highest value by both algorithms. When subsequent updating

does not decrease the value attached to this action, or increase the value

attached to other actions, the current action will become a “rest point” and

the AIs will have converged to a set of stable prices. Computational results

show that this process leads to supra-competitive pricing.

We then provide a proposition with two parts, one of which formalizes

the asynchronous computational results, and the other shows that perfect

synchronous updating, absent any value being placed on the future (i.e., β =

0) leads to competitive (Nash) pricing. The proposition requires only mild

regularity conditions; in particular it allows for history-dependent pricing,

different demand systems and so on, provided the algorithm is programed to

maximize current profits. So we view the computational results as robust.

Indeed they provide a way of computing Nash equilibrium prices anytime

they are needed.

We then delve deeper into the behavior underlying the rest points reached

by perfect synchronous and asynchronous updating by showing that each

satisfies one of the two sets of equilibrium conditions used in the Expe-

rienced Based Equilibrium (EBE) paper of Fershtman and Pakes (2012).

Asynchronous updating finds rest points that are EBE, while perfect syn-

chronous updating finds rest-points that satisfy the Restricted Experienced

Based Equilibrium (REBE) concept. This result does not require β = 0

or any restriction on the profit function or the state space (so it allows for
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history-dependent strategies). It therefore provides a basis for understanding

the rest points generated by the broader range of algorithms we turn to next.

The base case is extended in a variety of ways in section 5. Section (5.1)

extends the β = 0 case to allow for increases in the number of firms, ex-

perimentation, and intermediate cases lying between the extremes of perfect

synchronous and asynchronous updating8. Section (5.2) first uses the equi-

librium concepts introduced earlier to explain why the results for the β > 0

case can be different, and then considers the extensions listed above for that

case.

As would be expected, having more firms in a market mitigates the price

inflation induced by asynchronous updating. In the static setting (β = 0),

a market with five firms displays little propensity to settle on a price above

competitive levels.

Experimentation means that the AI periodically chooses a sub-optimal

action to explore its payoff.9 At first glance this experimentation may seem

like a substitute for the informationally demanding process of perfect syn-

chronous updating. Since, we cannot discuss rest points if experimentation

continues indefinitely, we provide a series of examples in which experimen-

8Appendix A.4, conducting the same exercise on quantity-setting (Cournot) games,
replicates known results in Waltman and Kaymak (2008) and shows the our distinction
between perfect synchronous and asynchronous learning is also relevant in that setting.

9Q-learning algorithms that employ experimentation learn about the values of choosing
non-optimal actions by using an ε-greedy algorithm. The algorithm chooses with proba-
bility 1-ε the optimal action, and with probability ε it experiments and chooses randomly
from all feasible actions. Once it choose an action it may update the value of taking that
action. See Sutton and Barto (2018). Calvano et al. (2020) provide an application in the
economics literature.
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tation is allowed to occur for twice the length of time that the base case

asynchronous algorithm takes to converge. Experimentation is then stopped

and the algorithm is continued until it reaches a rest point.

What we find is that experimentation does not fully mitigate the price-

inflating propensity of asynchronous updating. In fact, experimentation has

only limited success at reducing prices, and it comes at a significant cost in

computational burden10. The limited success and additional computational

burden imposed by experimentation, coupled with the potential financial cost

of implementing random prices, leads us to be skeptical that naive experi-

mentation is a practical solution to mitigating the price elevation introduced

by asynchronous algorithms.

Given the ineffectiveness of experimentation in mitigating price elevation,

we consider augmenting the basic asynchronous updating procedure with a

simple insight from economics: that demand curves slope downward (creat-

ing a low-information form of synchronous updating). The knowledge that

this is the case allows the algorithm to use an easily computable bound to

update the value the algorithm assigns to counterfactual prices is inconsistent

with the observed result and the assumption that demand decreases in price.

Leveraging this additional structure is far more effective at mitigating the

supra-competitive pricing of asynchronous updating than experimentation.

It is also less costly and easier to compute.

10There may also be a cost in terms of the revenue generated, as when the algorithm
experiments it does not use what it currently views as the optimal policy.

8



In section 5.2 we consider settings in which the future is given positive

weight by the algorithm (what we call the ‘repeated’ setting, with β > 0).

This is done in models in which the state space includes the prices chosen

in the prior period; so policies are history dependent. As in prior work

(notably, Calvano et al. (2020)), asynchronous updating leads to supra-

competitive pricing (indeed, often replicating monopoly). As we explain,

when β > 0 perfect synchronous updating can also lead to supra-competitive

pricing. We find that it does, albeit to significantly lower prices than in the

asynchronous case.

This extends the results in Calvano et al. (2020) to cases where syn-

chronous updating is used. We show analytically that one source of price

elevation in the synchronous case is analogous to the incentives appearing in

trigger price equilibrium; i.e., the ‘threat’ of lower cashflows in the future in

the event of ‘defection.’ However, a comparison to models with no history-

dependent pricing, i.e., models which do not allow the algorithm to mimic

deviation cum punishment schemes to support collusion, makes it clear that

a significant amount of the difference between the prices at the rest point and

Nash equilibrium prices has nothing to do with such punishment schemes.

Related Literature. Our paper is related to several of strands of liter-

ature. A number of papers investigate how AIs that employ reinforcement

learning could lead to pricing outcomes that are collusive in nature (see, for

instance, Calvano et al. (2020, 2021), Klein (2019), der Boer et al (2022),
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Epivent and Lambin (2022) and Eschenbaum et al (2022)).11 Calvano et al

consider a differentiated product pricing game with logit demands. We ex-

tend this work by examining how variation in the structure of the AI varies

the degree to which prices deviate from the static Nash behavior. 12

A related line of research considers settings in which the adoption of

algorithms in the pricing process allows firms to better infer demand and

how this may impact the propensity to collude. Miklos-Thal and Tucker

(2019) construct a theoretical model in which algorithms enhance the ability

of firms to forecast demand. They argue that this can lead firms to deviate

from collusive conduct more frequently, leading to lower prices and higher

consumer surplus (for a similar argument see also O’Connor and Wilson

(2019) and Martin and Rasch (2022)). Hansen, Misra and Pai (2020) consider

a setting in which price experimentation may make demand appear more

inelastic than it actually is which leads to supra-competitive pricing. Brown

11Johnson, Rhodes and Wildenbeest (2020) engage in a related computational study of
platform competition, showing that platforms can design their marketplaces in a way to
limit the prospects of collusion by merchants, and that this can be successful even when
Q-learning algorithms are used by merchants. They show that platform itself can benefit
from such design policies, in addition to raising consumer surplus.

12Waltman and Kaymak (2008) conduct a related computational experiment in a static
Cournot setting. Our paper differs in investigating the impact of the sophistication of the
learning process, and comparing environments with static and repeated interactions. A
computer science literature also considers the role of AIs using reinforcement learning in
shaping market outcomes (see, for instance, Tesauro and Kephart (2002) and Sandholm
and Crites (1995)). Ongoing work in this computer science literature has focused on
designing algorithms that can sustain cooperation in repeated prisoner dilemmas (see, for
instance, Xue et al. (2018)). To our knowledge, this computer science literature has not
explored the sensitivity of market outcomes to the basic informational requirements of the
AIs learning protocol, or how that interacts with other features of a richer pricing game
environment. Mnih et al (2015) compares the broader state of the AI research in computer
science to human learning, and considers an extension to the AI literature.
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and McKay (2021) present compelling empirical evidence that the adoption

of pricing algorithms materially impacts pricing patterns and complement

this with a theoretical exploration of how delegation to algorithms may allow

firms to commit to strategies leading to higher prices than would otherwise be

the case.13 Salcedo (2015) considers a somewhat similar theoretical setting,

arguing that demand fluctuations can allow firms to infer the algorithms used

by competitors and tailor their algorithms to better realize supra-competitive

pricing. Leisten (2021) considers the competition when humans are able to

limit, or override, the decisions of algorithms, and provides conditions under

which algorithmic competition, even with active human oversight, can still

lead to supra-competitive outcomes.

Our companion paper, Asker, Fershtman and Pakes (2022), provides a

five-page introduction to some of the results discussed in depth in this pa-

per. Its sole focus is on a subset of the the two-player static results. It

omits all discussions of equilibrium, formal proofs relating to convergence,

experimentation, cases with more than two players, and anything related to

dynamic models (β > 0) or policy. It is best regarded as a terse summary of

a subset of the results that this paper discusses in depth.

Empirical evidence as to the impact of the adoption of AI algorithms

is lagging. A notable paper in this regard is Assad et al. (2020), which

provides an empirical example in which the inferred adoption of algorithmic

13Aparicio, Metzman and Rigobon (2021) provide related evidence in the context of
supermarkets. Similarly, Normann and Sternberg (2021) provide related experimental
evidence.
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approaches to pricing by German gasoline retailers appears to have coincided

with an increase in margins of up to 38%.

An energetic legal and policy debate over the collusive potential of AIs

underlies much of the interest in the academic literature. Harrington (2018)

provides an excellent entry-level overview, while also expressing skepticism

about the ability of current cartel law to address any tendency for AIs to

induce supra-competitive pricing.14

This paper also connects with a range of other literature in economics.

Reinforcement learning, and its relationship to Nash equilibrium, has been

investigated in both theoretical (see Fudenberg and Levine, 2016, for a sur-

vey) and experimental (see Erev and Haruvy, 2016, for a survey) literatures.

On the theoretical side, that the AIs we investigate do not always converge

to Nash pricing is not surprising given Hart and Mas-Colell (2003)’s results.

Lastly, reinforcement learning has a long history as a tool in the compu-

tation of dynamic games (see Pakes and McGuire (2001) for an early imple-

mentation in a rich oligopoly model). Feshtman and Pakes (2012) propose

the experience-based equilibrium concept which we come back to below and

is extended in Asker, Fershtman, Jeon, and Pakes (2020).

14Examples of contributions directed at this policy debate include Mehra (2015), Ezrachi
and Stucke (2017), Kuhn and Tadelis (2017), Schwalbe (2018), de Coniere and Taylor
(2020), Assad et al (2021), and Veljanovski (2022). Goldfarb, Gans, and Agrawal (2019)
provide a broader overview of the likely impact of AI on the economy at large.
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2 Model

This section introduces AI pricing algorithms highlighting a choice that must

be made in implementation. To do so in as transparent a context as possible,

we focus on results for a simple model of a market – the homogenous good

Bertrand duopoly. We begin by describing this market environment, and

then explain the different ingredients of the AI algorithm that determine

its pricing policies. The next section considers generalizations and a more

formal result.

2.1 The Bertrand pricing game

Consider two firms i ∈ {1, 2} with equal marginal costs: c1 = c2 = c .

Firms are Bertrand competitors selling homogenous goods. We discretize

the action space and take the set of possible prices to be P = {p1, ..., pM},

with pm+1− pm = ξ, so the increment from one price to the next is constant.

The prices of firm i are denoted pi ∈ P . We let D(p) be the market demand

function. We assume that both firms have the capacity to serve all the

demand they face. We assume that consumers buy from the firm with the

lowest price. In case of a tie, firms split demand equally. Thus the demand

faced by firm i is

13



di(pi, pj) =


D(pi) if pi < pj

D(pi)
2

if pj = pi

0 otherwise

(1)

For simplicity we assume that there is a price V > 0 above which the

demand is zero and we assume that pM = V . We denote firm i’s profits as

πi(pi, pj). In the computational example, we make the assumption that the

same quantity is demanded ∀p < V . This simplifies implementation.15 In this

case, if c 6∈ P then there are two Nash equilibria for this (static) Bertrand

game.16 The first one is pi = pj = pc, which is the lowest regular price

greater than or equal to marginal cost, c. The second one is pi = pj = pc+1.

Where pc+1 = pc + ξ. If c ∈ P then there are three equilibria, all symmetric,

corresponding to both firms pricing at either c, c+ ξ or c+ 2ξ. 17

We allow this stage game to be repeated many times. This repetition

allows the AIs, which determine firms’ pricing policies, to learn to play. Ul-

timately we are interested in the pricing outcomes that the AIs converge

on. Given this, we are agnostic as to whether the learning occurs off-line,

through simulated play, or on-line, through learning from actual interactions

with other AIs (or any combination of the two). We now turn to a more

15We assume such a structure purely for computational convenience. Any function
where residual demand is decreasing in own price would suffice for our major results.

16For the moment, we ignore the possibility that repetition may enable history-
dependent strategies.

17This equilibrium structure is purely a consequence of the set of feasible prices be-
ing discrete. If prices were continuous, this would reduce to the familiar undergraduate
example in which p = c is the equilibrium.
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detailed description of the AIs.

2.2 The design of the AI Algorithm

The AI algorithm we use to play the Bertrand pricing game is a reinforcement

learning algorithm.18 In a reinforcement learning algorithm the coder defines

a goal for the algorithm (e.g., maximizing profits), sets a procedure for de-

termining initial values for all feasible actions, and formulates a rule which is

used to update those values. Whenever it is called on to act, the algorithm

chooses the highest valued action (the “greedy” action) with some proba-

bility (which may be one) and experiments with other actions otherwise.

Having acted, it observes the outcome and updates the values it attaches to

actions with an updating rule that the algorithm specifies ex ante. It is this

updating that allows experience to inform policies; i.e., the updating rule

determines how the algorithm learns. Reinforcement learning algorithms are

used for a wide range of problems in industry (see, for examples, Sutton and

Barto (2018)), and have been used in the economics literature to study the

interactions of firms in a market for some time.19

18We use a variant of Q-learning which was introduced by Watkins (1989). For a survey
of the different methods of implementing reinforced learning algorithms, see Sutton and
Barto (2018).

19Pakes and Mcguire (2002) show how to use reinforcement learning to compute Markov
Perfect solutions to dynamic games, Fershtman and Pakes (2012) and Asker et al. (2020)
provide their relationship to EBE (a notion of equilibrium used below), and Calvano,
Calzolari, Denicolo, and Pastorello (2020) use them to study pricing in markets where
prices are set by computer algorithms. Igami (2020) discusses the many links between AIs
and applied econometric practice, particularly in the estimation of dynamic models.
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We will take the goal of the algorithm to be to maximize the expected

value of the discounted flow of profits the firm earns. For simplicity our base-

line will set the discount factor (β) to zero, resulting in algorithms seeking

to maximize present profits, but we will also consider cases where β > 0, so

the discussion below applies to the latter case as well.

A reinforcement learning algorithm has the following ingredients.

(i) Each firm has a set Si which is a set of states for firm i (possibly a

singleton). The elements of Si, i.e., the si ∈ Si, are the components

of the firm’s information set that the firm conditions on when it deter-

mines which action to take. We assume that Si has a finite number of

elements.20

(ii) A set of numbers (or values) for every firm which can be interpreted as

the firm’s perception of the expected discounted values of net cash-flows

conditional on its state and action. That is, for every firm i

Wi = {Wi(p|si)}p∈P,si∈S .

(iii) A method for choosing an action (in our case, price) in every iteration

conditional on Wi.

(iv) An updating rule: The updating rule uses the information the firm

20We make this assumption to ensure that at least some subset of the state space is
visited repeatedly (i.e., ”infinitely often”). This will allow us to formally examine limits
of the price process.
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observed during that period to update theWi’s. That is, it is a function

that mapsWk
i intoWk+1

i based on the information observed at iteration

(or period) k.

In our context a “firm” in the above description is an algorithm. We will

be primarily concerned with how the properties of algorithms that converge

to a rest point differ with the updating rule built into the algorithm, and, to

the extent that it helps understanding, the relationship of those rest points to

notions of equilibrium. To be clear about what we mean by this statement,

we introduce the following definitions.

Definition 1 (Convergence): We say that the AI pricing algorithm has

converged at iteration k∗ if policies at all k ≥ k∗ are the same as policies at

k∗ for all s ∈ S.

Definition 2 (Rest Point): We will say that the AI pricing algorithm

reaches a rest point by iteration k = k∗ if for all k ≥ k∗ prices are constant,

i.e., {(pki , pkj ) = (pi, pj)}k≥k∗.

An AI algorithm can converge to a set of strategies which do not satisfy

the rest point condition. For example the converged process might put pos-

itive probability on more than one price vector, as in the Edgeworth cycle

example studied in Maskin and Tirole (1987a). On the other hand, if the

pricing algorithm has reached a rest point the Markov process underlying it

has converged.
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When designing a reinforcement learning algorithm, certain choices need

to be made. As will be shown in the rest of the paper, these choices can

have a material impact on the observed price outcomes. As a result, some

comments on each of the components of the algorithm will prove useful.

The state space Si: In a reinforcement learning algorithm the state

space defines what the algorithm knows about its environment, and hence

what it can condition its actions on. If the state space is a singleton, then

from the point of view of the algorithm every period is the same as every

other. If the state space includes some information about the history of

past play, then it becomes possible for the algorithm to condition actions on

that history (although the extent to which it does so will depend on details

of the algorithm). Similarly, if the environment is changing (say, demand

shifts) and this change is registered in the state space, then the algorithm

can condition actions on that information.21

Firms in a given market may condition on different state spaces. If they

do, then Si 6= Sj, and if these are the only two firms then the market’s states

are given by S = (Si, Sj). For example, firms may condition their prices on

different functions of what they observed in the past22, and not all variables

21The influence of the state space on the set of feasible policies mirrors the influence
of the state space on the types of strategies that can be played in a dynamic game. It
is common to restrict state spaces in dynamic games to only include payoff relevant and
informationally relevant variables (see, Maskin and Tirole (2001), Fershtman and Pakes
(2012) and Asker et al. (2020)). For the purposes of this paper, the only necessary
restriction is that the state space be finite.

22For an analysis of an AI pricing algorithm that takes this explicitly into account see
Brown and McKay (2020).
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observed by one firm need be observed by other firms.

The values Wk
i = {W k

i (p|si)}: Each possible action at each state has a

value attached to it in each period (or iteration), our k. The designer of the

algorithm determines the procedure for choosing the initial values assigned

to each element of Wi, say W0
i = {W 0

i (p|si)}p∈P,si∈S .

The choice of action: In the absence of any experimentation by the

reinforcement learning algorithm, the algorithm chooses the action with the

highest W k
i (p|si) at the state (the si) it finds itself in. That is it pursues

a ‘greedy’ policy which we denote by pk,∗ where pk,∗ ∈ arg max{W k
i (p|si)}.

When experimentation is possible we consider variants on ‘ε−greedy’ poli-

cies. That is, the greedy policy is pursued with probability 1− εk, and with

probability εk a policy is selected randomly. The k indexes the εk to allow it

to vary with the iteration of the algorithm.

Note that there is a sense that experimentation is costly, as the player

does not use the action it perceives to be optimal at the time of play. This

loss must be set against the increment in future profits generated by exploring

what the returns might be from other actions: the familiar exploitation versus

experimentation tradeoff which we return to below.

The updating rule. After every period k the algorithm updates one

or more of the values W k
i (p|si) that are in memory. That is, for at least

some combinations of p and si, W
k
i (p|si) gets updated and transitions to

W k+1
i (p|si). If a W k

i (p|si) is not updated, W k+1
i (p|si) = W k

i (p|si). There are
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different possible updating rules, and the rules that are feasible are limited

by both the information the algorithm can access on competitor’s play and

by what market-specific knowledge the algorithm has built into it.

It is useful to begin by distinguishing between two extremes of possible

updating rules.

1. Asynchronous Updating: If the state in the current period is si, then

only W k
i (pki |si) is updated, where pki is the action (price) chosen by firm

i in period k.23

2. Synchronous Updating: If the state in the current period is si, then

W k
i (p|si) is update for all p ∈ P at that si.

We now detail the updating rules we use in this paper. Let ski be the state

of firm i in period k and pki (pkj ) be the price chosen by firm i (j). To make our

points in a transparent way, most of the text assumes that the transition from

the current state (ski ) to the state in the next period (sk+1
i ) is deterministic

(later we return to the complications that arise if experimentation is built

into the algorithm). If W k
i (p|si) is changed during the update

W k+1
i (p|ski ) = (2)

α(k)

[
πi(s

k
i , p) + β

(
max
y∈P
{W k

i (y|sk+1
i )}

)]
+ (1− α(k))W k

i (p|ski ).

23The terms synchronous and asynchronous are slight abuses of language in the context
of the broader reinforcement learning literature. In that literature ‘asynchronous’ is used
to refer to any algorithm in which only a subset of the Wi(p|s)’s in the system are updated
at each iteration, and that subset can vary with s (see Sutton and Barto (2018)).
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where β is the discount rate. Otherwise W k+1
i (p|ski ) = W k

i (p|ski ).

Equation (2) implies that the change in perceived value of play (W k+1(·)−

W k(·) ) is αk times the difference between the observed value of the kth

period’s outcome from choosing p, computed as profits plus the discounted

expected continuation value, and the initial (or kth period) perceived value

of the action. So α(k) ∈ [0, 1) determines the impact of current observations

on perceived values.

When asynchronous updating is used, W k
i (p|si) is updated only for p = pki

at si = ski . In this case πi(s
k
i , p) is the realized profits of firm i in iteration

k, and this is the only object the algorithm needs to know to do the update.

But when synchronous updating is used, W k
i (p|si) can be updated for all

p ∈ P at si = ski . In our extreme case we assume the algorithm can calculate

the πi(p, p
k
j ) exactly. We call this perfect synchronous updating. This would

be possible if pkj is observed by the algorithm, and it knows the market

demand function and its own costs, which is the case in the initial perfect

synchronous algorithm we compute. This coding of the perfect synchronous

and the asynchronous, that is endowing the perfect synchronous algorithm

with the ability to compute the profits that would have been earned had it

taken a different action but assuming the asynchronous algorithm can only

learn from the profits generated by the action taken, makes it easy for us to

illustrate the issues we focus on.

For both the perfect synchronous and asynchronous algorithms, we need

an initial set of perceptions, a W0
i = {W 0

i (p|si)}p∈P,si∈S . For all the cases
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we consider in this paper, we take this to be a random draw from the same

distribution (specified below).

Baseline Parameterization. In our base case, Si is a singleton, α(k) = α,

β = 0, and both firms have the same profit function, resulting in the updating

rule (equation 2) reducing to

W k+1
i (p) = απ(p, pkj ) + (1− α)W k

i (p). (3)

After illustrating what happens in this case, we move to more general cases.

More generally the possible updating processes would depend on (i) what

the algorithm observes about competitors’ play, and (ii) what it knows about

the primitives of the game (in our case the demand and cost functions). A

reinforcement learning algorithm with perfect synchronous updating can be

quite sophisticated. In every period, it updates the values of all feasible prices

at the current state and so necessarily considers the counterfactual profits it

would have received had it chosen an alternate price. To correctly calculate

these counterfactuals it would have to have a model of demand and costs,

which is the case in the perfect synchronous updating model that we focus

on. By contrast, an algorithm with asynchronous updating is rather simple;

all the updating process does is use its current price and profits to compute

an update on the values of the profits it expects to receive from that price.

Between the perfect synchronous and asynchronous updating there is

room for protocols that incorporate more or less information and approxima-
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tions that are understood to be noisy or biased. In the example we illustrate

below, the firm knows its own costs and quantity, does not know the price of

its competitors or the form of the demand function, but does know that its

residual demand is downward sloping in its own price. It updates the W k
i (p|·)

at all prices less than the price played whose value can be rationalized only

by quantities less than the quantity it received, and it updates all W k
i (p|·) at

higher prices which require quantities greater than the quantity it received.

A comparison between possible updating rules is really a comparison of

the sophistication of the AI algorithms the firms employ. This is likely to

depend on the complexity of their economic environment and the willingness

to devote resources to supporting the AI program underlying the algorithm.

3 Rest Points of Different AI Algorithms

We begin with computational results from the Bertrand pricing game intro-

duced in section 2.1. Firms have a discount rate of zero, so they do not care

about future payoffs, and the state space is a singleton, so history-dependent

strategies are not feasible. Note that either a discount rate of zero or an

inability to formulate history-dependent strategies makes repeated game in-

teractions that could support prices above a static Nash-in-price equilibrium,

like trigger price strategies, unattainable.
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3.1 Computational results

This section provides computational results for two homogenous product

static Bertrand games; one game uses an AI algorithm that updates syn-

chronously and the other asynchronously. Both algorithms use the updating

rule in equation 3 with α = 0.1 when updating, and take ”greedy” actions

(i.e., they always chose the price which their perceptions indicate has the

highest profits). Both algorithms also use the same procedure to obtain

their initial perceptions of the value associated with all feasible actions.

Our parameterization has demand equal to zero for any price above ten

(which is also the monopoly price), and equal to one for any price below

or equal to ten. Marginal cost is equal to two. Feasible prices are given

by a grid with 100 elements, equally spaced between 0.01 and 10, inclusive.

There are two Nash equilibria to this game – one in which both firms play

2.03 and the other in which both firms play 2.13. For initial perceptions of

the values associated with each price, we draw from a uniform distribution

with endpoints ten and twenty (or U [10, 20]). The figures we present contain

quantiles of the distribution of a hundred price paths we generate in this way.

Note that the initial perception of profits from playing any given price is

always above any possible profit outcome (though the extent to which they

are above is random). As is well known in the reinforcement learning litera-

ture, the fact that each sample path starts with initial values that are higher

than any possible outcome induces exploration24. We deal with different ini-

24That is there are two ways to induce an algorithm to explore. One is through relatively
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tial conditions distributions when we consider formal properties of the two

updating algorithms below.

Figure 2 summarizes pricing outcomes for the baseline parametrization

described in section 2.25 Panel (a) of this figure provides quantiles of the

price paths from an algorithm when both firms employ perfect synchronous

updating; panel (b) shows price paths when both employ asynchronous up-

dating. There are five lines in each panel of figure 2. From bottom to top

these are, by period, the min, 25th percentile, median, 75th percentile, and

max price across the 100 simulations that are run.

Start with panel (b) of figure 2. Convergence is relatively slow, but after

4600 periods none of the paths simulated from the AI algorithm with asyn-

chronous updating change their preferred actions and all of the percentiles

stay constant.26 Most notably there is a distribution of rest point prices, but

all are significantly higher than the Nash equilibrium prices. The median

price is 8.34 and the minimum is 5.06. Note also that all quantiles tend to

increase over the course of the learning process; i.e., they move away from

the Nash equilibria.

By contrast, when the AI learns via perfect synchronous updating prices

converge quickly to Nash pricing levels. In this instance all prices, across

large initial perceptions of different prices; a high {W 0(p|s)}p∈P,s∈S . Another is through
experimentation. Below we augment the algorithm to allow for experimentation, and
hence both kinds of exploration.

25The full details of the parametrization are found in the notes at the bottom of the
figure.

26Most paths settle on a single price by iteration 2500.
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all 100 simulations settled on 2.13 after approximately 105 iterations. Thus

learning was much faster, price outcomes corresponded to a static Nash out-

come, and initial conditions had no influence on the limiting prices (there is

no variance in the final prices over the 100 simulations).

Figure 2: Price outcomes with different algorithm designs
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(a) perfect synchronous Updating
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(b) Asynchronous Updating

Notes: Prices (vertical axis) by period (horizontal axis) from 100 simulations are shown. The lines, from bottom to top,

represent the min, 25th percentile, median, 75th percentile, and max of the distribution of prices in each period. Results

are for a static Bertrand market with two firms selling homogeneous goods.. Results are shown for firm 1. The model is

parametrized as follows. Demand, Q = 1 if P ≤ 10, zero otherwise. Marginal cost = 2. Feasible prices exist on a grid

with 100 elements equally spaced between 0.1 and 10 inclusive. Firms put a zero weight on future profits (the future is

discounted to zero). The state space is a singleton. The weight on current returns in updating is given by α = 0.1.

Initial conditions are i.i.d. draws from U [10, 20], for each W (p) for each firm. For the core code see appendix A.1.

Figure 2 illustrates the importance of the learning (or updating) process

in understanding the implications of price competition between AI algorithms
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on the outcomes that may emerge. Asynchronous updating leads to supra-

competitive (‘high’) prices. perfect synchronous updating leads to pricing

that is in line with what economists would think of as a competitive outcome

(the static Nash equilibrium in prices). Importantly, this happens in a setting

in which firms do not care about the future and are unable to play history-

dependent strategies. Thus though standard collusive equilibria of the sort

familiar from the repeated game literature are not feasible, the asynchronous

algorithm always generates rest point prices that are significantly above the

Nash equilibrium values.

Figure 3 provides more detail on the learning process. Each panel in figure

3 shows the convergence process for a set of initial conditions drawn from

U[10,20]. As in figure 2, panel (a) corresponds to the perfect synchronous

updating case and panel (b) corresponds to the asynchronous updating case.

Each panel shows the prices chosen by firm 1’s AI with circles. The hollow

circles indicate chosen prices for which the W k(p) is not updated upward;

solid circles indicate chosen prices for which the W k(p) is updated upward.

In panel (a) of figure 3, the perfect synchronous case, convergence is

fast. The Nash pricing outcome of 2.13 is reached by period 70. Initially, all

perceptions are higher than the profits that result from the price chosen. This

leads to the updating process (3) in the perfect synchronous case adjusting

perceptions of the profits from all prices downward. For example, in iteration

1, initial conditions on W (p) lead firm 1 to choose p = 4.05, and its the rival

chooses 0.92. Firm 1 does not earn any profits from this price combination.
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Figure 3: Convergence with different algorithm designs
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Notes: Prices (vertical axis) by period (horizontal axis) are shown for a firm 1, in a static Bertrand market with two

firms selling homogeneous goods. Hollow circles indicate (chosen) prices for which the W (p) is updated downward. Solid

circles indicate (chosen) prices for which the W (p) is updated upward. The model is parametrized as per figure 2

In iteration 3, after W (p)’s have been updated twice, the rival chooses 3.14.

Next, in round 10, firm 1 changes its choice to 2.94, just undercutting 3.14.

This, however, coincides with the rival raising its chosen price to 3.84 (which

more profitably undercuts firm 1’s original choice of 4.05). This combination

of chosen prices continues until iteration 15, when firm 1 raises its chosen

price to 3.24. After one iteration of updates to the rival’s W (p), 3.14 becomes

the rival’s best choice. Then, in iteration 17, the cumulative updates of firm

one’s W (p)’s are such that 2.94 becomes the best price. From that point
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on, a pattern of intermittent undercutting develops until the prices converge.

This convergence pattern is common, with the influence of initial conditions

in early periods leading to a small amount of non-monotonicity, as seen here.

In panel (b) of figure 3 (the asynchronous updating case) convergence is

non-monotonic and slow. The prices converge to 8.89 in period 1,645. As

in the perfect synchronous case, the fact that the initial condition draws are

higher than monopoly profits, implies that in early periods, the evaluations

fall. That is, when a price pk is chosen, it generates a lower profit than the

W k(p) associated with pk, and so W k(pk), and in this asynchronous algorithm

only W k(pk), is adjusted downward. Eventually the initial valuation of some

other price is higher than the profit earned from the given price, so some

other price will be chosen. Since only the price that is chosen has its W k(p)

updated, and the second price also starts from a perception which is higher

than monopoly profits, it takes quite a few iterations before the chosen price

can generate a profit which is higher than the iteration’s perception of its

value.

The first time the chosen price generates a profit that is higher than its

initial valuation, i.e., W k(pk), is in iteration k = 1, 119. This leads to an

upward adjustment and a solid black circle in the bottom panel of figure 3.

As long as the price of the rival is not reduced to match or undercut the

price, firm i does not change its price. Since at k = 1,119 the rival’s price

is greater than p1,119, it obtains no profits and its valuation of its chosen

price falls. Eventually it chooses a different price which, if equal to or lower
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than p1i , 119, generates positive profits. If the rival’s new price is lower, firm

i’s profits go to zero and its evaluation of p1,119i falls. However if the rival

happens to chose p1,119i both firms earn positive profits. If, in addition, at

that k, π(pk, pk) ≥ max[W k
i (p),W k

j (p)], the algorithm will have converged to

pk.

In this example, the two firms matched on price 22 times before the second

requirement for convergence. The asynchronous updating and equation (3)

insures that for k > 1, 119 the absolute value of both [W k
i (p∗)−π(p∗, p∗)] and

[W k
j (p∗) − π(p∗, p∗)] converge monotonically to zero, and if p 6= p∗, W k(p)

remains forever at W k=1,119(p).

3.2 Theoretical results

It should be clear that the price the asynchronous algorithm rests at depends

on initial conditions, hence the distribution of converged values illustrated

by the quantiles of the sample paths in 2. Indeed, provided the distribution

of initial conditions is sufficiently rich, the limiting outcome from the asyn-

chronous algorithm has a positive probability of any p ∈ P . By contrast, the

perfect synchronous algorithm can only converge to a Nash equilibrium. The

following provides a formal justification of these points, and establishes that

the computational results reflect intrinsic differences in how asynchronous

and perfect synchronous updating function.

Proposition 1 Consider the duopoly pricing game between AI algorithms
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described above with initial conditions drawn randomly from a distribution

which puts positive probability on Ŵ0 ⊂ W0 such that W 0
i ∈ Ŵ0 ≥ max(pi,pj)π(pi, pj).

1. If the AI algorithms use perfect synchronous updating

(a) and the two algorithm choose a pair of prices which is a Nash

equilibrium to the static pricing game, they will continue to charge

these prices in every future period, and, in addition,

(b) any rest point of the algorithm must be a Nash pricing equilibrium

of the duopoly game.

2. If the AI algorithm uses asynchronous updating, there is positive prob-

ability that the algorithm converges to any p ∈ P.

Proof: (1a). Assume that at period k, which is the initial condition for

our inductive argument, the two algorithms charge a pair of prices (pN1 , p
N
2 )

which is a Nash equilibrium of the duopoly pricing game. This implies that

π1(p
N
1 , p

N
2 ) ≥ π1(p, p

N
2 ) for every p ∈ P . The updating of the values of the

algorithm of firm 1 at period k is done for every p ∈ P by the updating

rule W k+1
1 (p) = απ1(p, p

N
2 ) + (1 − α)W k

1 (p) (and analogously for firm 2).

Given that π1(p
N
1 , p

N
2 ) ≥ π1(p, p

N
2 ) and that W k

1 (pN1 ) = maxp∈P{W k
1 (p)},

W k+1
1 (pN1 ) = maxp∈P{W k+1

1 (p)} and therefore the algorithm will choose pN1

at iteration k + 1. The same holds for the second firm, and therefore the

prices at iteration k + 1 are (pN1 , p
N
2 ), which proves the inductive step of the

argument. �

31



Proof: (1b). Assume to the contrary that there is a k∗ such that ∀ k > k∗,

W k(p′1) = maxpW
k
i (p) with the analogous condition holds for firm j, and let

b1(p
′
2) be the best response of player 1 in the duopoly pricing game. 27 For

the contrary assertion to be true b(p′2) 6= p′1 and π1(b1(p
′
2), p

′
2) > π1(p, p

′
2)

for every p ∈ P . With synchronized updating W k+1
1 (p) = απ1(p, p

′
2) + (1 −

α)W k
1 (p) for every p ∈ P . Consequently, limk→∞W

k
i (p′1) = π(p′1, p

′
2) <

limk→∞W
k
i (b(p′1)) = π(b(p′2), p

′
2), a contradiction. �

Proof: (2). Sufficient conditions for p∗ to be a rest point to the game

when updates are asynchronous are: (i) Wi(p
∗) ≥ Wi(p) for every p 6= p∗

and i = 1, 2, and (ii) πi(p
∗, p∗) ≥ Wi(p) for every p 6= p∗ for i = 1, 2.

Under condition (i) the firms indeed choose the price p∗ and condition (ii)

guarantees that condition (i) will continue to holds in all future periods. For

any p∗ there is a positive probability that the random draw on the initial

conditions satisfies both (i) and (ii). �

Remark None of the three parts of this proposition depend on the exact

structure of the profit function, the updating function provided α ∈ (0, 1),

or the initial condition distribution provided that it satisfies our ”sufficiently

rich” support condition. As a result, though we have computed results for the

same two algorithms from the logit differentiated product case, for quantity-

setting games and for different initial conditions distributions we omit most of

them from the main text. We discuss quantity-setting (Cournot) in appendix

27We assume for convenience that there is always a single best response. A best response
will always exist since the set of prices is finite.
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A.4 and logit results in appendix A.2.

4 Equilibria for Algorithmic Pricing Games

The rest points of the asynchronous and perfect synchronous algorithms sat-

isfy different equilibrium conditions, and an understanding of those condi-

tions clarifies why and when different learning rules imply different rest points

for AI pricing games. Unless otherwise stated, the results in this section ap-

ply to any pricing algorithm that abides by the general description of the

algorithms given in section 2.2. The relevant equilibrium conditions are pro-

vided in Fershtman and Pakes (2012), and Asker et al. (forthcoming) and

the reader interested in a more formal analysis of their implications should

consult those papers.

In the general case, the algorithm’s choice of actions, the choice of p ∈ P ,

can differ with s ∈ S (for e.g., as a function of past prices). If the algorithm

has converged, those policies are constant thereafter for each s ∈ S. Any set

of such policies generates a Markov chain on S; that is, the state at iteration

k together with the prices chosen at that iteration generate a transition to the

state at iteration k+1. Any finite state Markov chain will eventually wander

into a recurrent subset of the points in S, say R ⊂ S, and stay within it

forever. So all rest points of AI pricing games are contained in the recurrent

class of the Markov process generated by the policies that the AI converged

to. Since Si can include functions of past prices, this includes policies with
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history-dependent strategies.

The equilibrium concepts we consider are all refinements of experience

based equilibrium (henceforth EBE). An EBE has three components:

• a subset of the state apace, denoted by R ⊂ S.

• strategies for each i, say {p∗i (s)} for every s ∈ S, and

• a set of values for each i, our {Wi(p|s)}p,s, that have the interpretation

of beliefs about the expected discounted value of profits were the agent

to play price pi at state si.

For these objects to satisfy the conditions of an EBE it must be the case that

1. the strategies are optimal given the beliefs embodied in the {Wi(p|s)},

i.e., p∗i (s) = arg maxp∈P{Wi(p|s)} for all i and all s ∈ S,

2. R is a recurrent class of the Markov process generated by these strate-

gies, and

3. at all s ∈ R, Wi(p
∗(s)|s) does in fact equal the expected discounted

value of profits if the policies are followed.

The rest point of an AI pricing game that plays greedy policies and uses

asynchronous updating will satisfy the conditions of an EBE. The fact that

the policies are greedy insures (1), and if we are at a rest point that point is a

recurrent class (insuring 2).28 The third condition states that if equilibrium

28For simplicity, here and below we are assuming that the (si, sj) associated with the
rest point (p∗i , p

∗
j ) is unique.
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policies are played indefinitely the average of the realized discounted value at

each s ∈ R converges to Wi(p
∗
i (s)|s). Given the updating equation (equation

2), the fact that we stay at the rest point indefinitely (so s = R), and the fact

that (p∗i (s), p
∗
j(s)) is played repeatedly, insures that Wi(p

∗
i (s)|s) converges to

[1−β]−1πi(p
∗
i (s), p

∗
j(s)), the discounted value of returns that would be earned

if (p∗i (s), p
∗
j(s)) were played indefinitely. An analogous condition holds for

firm j.

Notice that EBE does not put as stringent a condition on the perception of

returns for feasible policies not played: for policies “off the equilibrium path.”

It requires only that the perceptions of these returns are less than those of

the optimal policy; i.e., that Wi(p|s) ≤ Wi(p
∗
i (s)|s). The implication is that

if randomness in the initial conditions happens to generate high perceived

values for both agents at a particular couple of choices, and those values

generate profits plus discounted continuation values which are higher than

the perceived values at other prices, the values at the other points will never

be updated. Then the algorithm will stick with the values that generated

the initial choice forever. If the initial iteration’s values did not satisfy these

conditions, a subsequent iteration could, and we would reach high prices at

a later iteration, as in panel (b) of figure 1.

Perfect synchronous updating leads to rest points that satisfy stronger

conditions than those of an EBE. In particular, the fact that all values are

updated at each iteration also restricts the perceptions of returns for the

feasible policies that are not played at the rest point. The implications of
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the additional conditions are different when the model has β = 0 and when

β > 0.

When β = 0, the update for perceptions at the rest point for firm i is just

current returns. With perfect synchronous learning, this implies that the

update for every p ∈ P for firm i is πi(p, p
∗
j) and for agent j it is πj(p, p

∗
i ).

Since the rest point is visited repeatedly, the perceived value of play at every

p converges to the discounted value of these profits for the two firms. As

a result, regardless of initial conditions, the nature of S, or the form of the

profit function, the optimal strategy at the rest point must eventually satisfy

π(p∗i , p
∗
j) = maxp∈P πi(p, p

∗
j) with an analogous condition for firm j. So when

β = 0 the rest point must be a Nash equilibrium, as in panel (a) of Figure 1.

When β 6= 0, the rest point from a perfect synchronous updating algo-

rithm need not satisfy the condition that the perception of the value of all

feasible policies is equal to the expected discounted value obtained from play-

ing the action repeatedly. When β 6= 0, the rest point satisfies the second set

of equilibrium conditions introduced in Fershtman and Pakes (2012); those

of a restricted EBE (or REBE). REBE abides by the first two conditions of

an EBE, but strengthens the consistency requirement (the third condition)

by requiring that the consistency condition hold for feasible actions that are

not optimal (for p(si) 6= p∗(si)), but only when the feasible actions result in

outcomes that are in R (i.e. are visited repeatedly).

The restriction of the consistency condition to outcomes that are in R

is also the rest point condition that emanates from perfect synchronous AI
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pricing algorithms29. This is because the discounted value of future returns

for points outside of R are not visited repeatedly, so we cannot use a law of

large numbers to prove that their perceived values converge to any particular

value. When β 6= 0 and a perfect synchronous learning model is used, the

update for a feasible but non greedy policy consists of current profits plus

the discounted perceived value of future play were the non-optimal action

played. However since the non-greedy policy is not played at the rest point,

though the perfect synchronous algorithm updates current profits with real-

ized profits at the rest point, the discounted perceived values of future play

(the ”continuation values”), are not updated with realizations from what

would have occurred were those actions taken. So if greedy policies are

played throughout, the perceived values for feasible actions at the rest point

will be determined by the random draw on initial conditions, while if there is

some experimentation, the draws on the experiments will also help determine

the rest point.

Asker et al. (2020) consider a condition which restricts the perceptions of

returns from off the equilibrium path play further and use it in their analysis

of dynamic procurement auctions. However their extra condition, labelled

“boundary consistency,” is not used in any AI pricing game we are aware of,

and will not be satisfied “naturally” at a rest point of the algorithm (to check

29Formally, points in R that can only transit to other points in R no matter which
feasible policy is played are referred to as “interior points,” while points in R for which
there is a feasible policy which would transit to points outside of R are referred to as
“boundary points.”
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it a separate subroutine must be built into the algorithm). Consequently we

focus on the implications of the simpler REBE condition in the extensions

investigated in the next section.

5 Extensions to more complex environments

This section considers the implications of learning models when our basic AI

pricing algorithm is extended in various ways. Given the results above, we

do this first for the case where β = 0 and then for the case where β > 0. The

extensions include allowing for more than two competitors, experimentation,

and cases where the algorithm only has the ability to update the value of

counterfactual policies imperfectly.

The latter case is relevant when either competitor’s prices are not ob-

served or the demand system is not known. Then the algorithm might still

use basic economic reasoning, in our example the assumption that the resid-

ual demand curve slopes downward, to update the value of counterfactual

policies. This example is extreme in that it assumes that neither the com-

petitor’s prices nor the demand system can be even imperfectly inferred from

observed behavior. However, it will suffice to make the point that adding a

little bit of information to the algorithm, in addition to the profits the algo-

rithm “observes,” makes notable changes to the rest point.

When considering models with β > 0, we allow for history-dependent

strategies. This enables the algorithm to generate equilibria that mimic col-
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lusive equilibria supported by familiar punishment strategies. Two points

should be kept in mind here. First, the strategies generated by the algo-

rithm are partly a function of random draws, in contrast to purposeful be-

havior. Second, models with larger state spaces are harder to compute. The

complexity of an algorithm which keeps past prices (or any other competitor-

specific state) in memory increases, often dramatically, with the number of

competitors, and this limits their usefulness. 30

5.1 β = 0: Algorithms that play static games

Increasing N , the number of firms. Table 1 extends the computational

results reported in figure 2 by varying N , the number of firms. Both the

perfect synchronous and asynchronous algorithms are proficient at finding

the optimal monopoly price when N=1. As N increases to 2 and higher, the

perfect synchronous algorithm converges quickly to Nash pricing outcomes31.

By contrast, the asynchronous algorithm converges to a price greater than

Nash in 100 percent of instances when N=2, and 71.5 percent of instances

when N=3. This decreases as N increases further, with this percentage

approaching zero by the time N = 10. Further, the number of iterations

until convergence for the asynchronous algorithm is typically two orders of

30If we simply bin prices and do not impose further restrictions, the memory require-
ments will increase exponentially in the number of firms, though if we assume, as is often
done in applied work, that the policies are exchangeable in the states of competitors, the
rate of growth in the number of competitors decreases, from exponential to geometric, see
Pakes and McGuire, 1994.

31For N ∈ {2, 3, 4} the highest static Nash price is 2.13 (2.03 is also a Nash outcome).
For N ≥ 5 the only static Nash equilibrium price is 2.03.
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magnitude higher than for the perfect synchronous algorithm.32

The results in figure 2 indicate that having multiple competitors can

significantly mitigate any adverse price effects that arise from the use of an

asynchronous algorithm. That said, even in only moderately concentrated

markets (those with 4 to 6 competitors), pricing above static Nash levels can

occur relatively frequently.33

Experimentation. Thus far we have investigated algorithms that do not

experiment as they learn. If an algorithm is programed to experiment, it

deviates from choosing the greedy policy, i.e., the policy associated with the

maximum of the W ’s in memory, and instead chooses a random action and

obtains information on what the payoff of that action is. We consider how

experimentation might affect the asynchronous results in figure 2.34

Deciding how an asynchronous algorithm may experiment involves mak-

ing a range of decisions. We consider experimentation which occurs with

probability [k
1
θ ]−1 in each round, where k indexes the iteration of the simu-

lation, and θ is a parameter we vary. So the frequency of experimentation

declines as k increases and the algorithm has more observations to learn

32These results are qualitatively similar in an environment with a Logit demand system
in Appendix A.2. Interestingly, in those results the asynchronous case is shown to reach
results higher than monopoly, and also below Nash, in some instances.

33For N = 6, the percentage greater than static Nash is 2.1. In the case of the Logit
model reported in Appendix A.2, the percentages for N = {4, 5, 6} are 71.9, 66.6 and
60.6, respectively, suggesting that the results reported in table 1 may understate these
probabilities for, at least some, alternative environments.

34The addition of experimentation to the perfect synchronous algorithm (panel (a) of
figure 2) would be redundant as the perfect synchronous algorithm updates all possible
actions anyway.
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Table 1: Pricing outcomes as N varies

% > Time to
Algorithm N Min 25th Median 75th Max Static Nash converge

perfect synchronous 1 10.00 10.00 10.00 10.00 10.00 - 50
2 2.03 2.13 2.13 2.13 2.13 0 115
3 2.03 2.13 2.13 2.13 2.13 0 70
4 2.03 2.13 2.13 2.13 2.13 0 75
5 2.03 2.03 2.03 2.03 2.03 0 85
10 2.03 2.03 2.03 2.03 2.03 0 90

Asynchronous 1 10.00 10.00 10.00 10.00 10.00 - 1,235
2 4.65 7.28 8.39 9.29 10.00 100 4,550
3 2.13 2.13 2.84 3.95 10.00 71.5 8,530
4 2.03 2.13 2.13 2.13 7.38 19.9 10,395
5 2.03 2.03 2.03 2.03 3.34 12.1 10,395
10 2.03 2.03 2.03 2.03 2.23 0.1 10,025

Notes: For each N , 1,000 simulation runs were conducted. The minimum, 25th percentile, median,

75th percentile, and maximum of the prices for firm 1, across the 1,000 simulations, once all simulations

have reached a rest point, is reported. ‘% > Static Nash’ reports the per cent of simulations that reach

a rest point that is higher than the highest static Nash price. For N ∈ {2, 3, 4} the highest static Nash

price is 2.13 (2.03 is also a Nash outcome). For N ≥ 5 the only static Nash equilibrium price is 2.03.

‘Time to converge’ reports the number of iterations until the reported price moments cease to change

(each simulation was eventually stopped after 40,000 iterations). The model is as per figure 2, but for

the reported changes in N .
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from. For a given k, the frequency of experimentation increases with the

θ parameter. When the algorithm does experiment it chooses each feasible

action with equal probability.

There will not be a rest point after a finite number of iterations without

an end to experimentation. Since the asynchronous algorithm, absent ex-

perimentation, reaches a rest point within 5,000 iterations (see figure 2), we

allow experimentation to occur for 10,000 iterations. That is, we allow exper-

imentation to double the computational time required by the algorithm to

reach a rest point when there is no experimentation. After 10,000 iterations,

we stop experimentation and let the algorithm run until it converges.

Table 2 reports the resulting price distributions as θ, the intensity of

experimentation, varies. For each value of θ we also report the minimum of

the number of times any action is attempted during the course of learning,

labeled ‘Min # of times an action is played’. This provides a way to judge

the extent to which experimentation reaches all feasible actions.

The results in Table 2 indicate that experimentation is not a simple fix for

the propensity for the asynchronous algorithm to elevate prices. Apparently

a reasonable amount of experimentation does mitigate this propensity, but

does not remove it. What an optimal experimental process might look like

is unclear as it would have to face the familiar problem of trading off “ex-

ploration” against “exploitation” in an environment with competition.35 It

must surely penalize excessive computational burden, and occur at some fre-

35See Sutton and Barto (2018).
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Table 2: Pricing rest points as θ varies

Min # of times an Pr(experimentation)
θ action is played at iteration 10,000 Min 25th Median 75th Max

1 14 0.0001 5.36 7.07 8.03 9.24 10.00
2 17 0.0100 3.04 6.42 7.68 8.89 10.00
3 20 0.0464 3.04 5.46 7.02 8.54 10.00
4 24 0.1000 2.73 4.25 6.27 7.98 10.00
5 29 0.1585 2.53 3.84 5.56 7.68 10.00
6 33 0.2154 2.53 3.54 5.01 7.28 10.00
7 37 0.2683 2.13 3.44 4.65 6.87 10.00
8 42 0.3162 2.13 3.34 4.40 6.57 10.00
9 45 0.3594 2.13 3.34 4.20 6.37 10.00
10 48 0.3981 2.13 3.34 4.15 6.06 10.00

Notes: For each θ, 100 simulation runs were conducted. Experimentation occurs with prob-

ability 1

k
1
θ

in each round, where k indexes the iteration of the simulation. If experimentation

occurs, an action is selected at random (with each possible action having equal probability).

Experimentation stops after 10,000 iterations. The algorithm continues after that point with

no experimentation until a rest point is reached. The minimum, 25th percentile, median, 75th

percentile, and maximum of the prices for firm 1, across the 100 simulations, once all simulations

have reached a rest point, is reported. N = 2. The model is as per figure 2, but for the addition

of experimentation.
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quency which is both frequent enough to be informative, but no so frequent

as to cause an expected discounted profits decline. What does seem clear is

that algorithms that build in experimentation are not likely to completely

fix the propensity of asynchronous algorithms to elevate prices.

Imperfect counterfactual updating. As previously noted, the asyn-

chronous and perfect synchronous algorithms require access to very different

amounts of information; the asynchronous algorithm needs to know only the

profits it received from the price it played, whereas the perfect synchronous

algorithm requires an ability to run a complete set of counterfactuals condi-

tional on the state. To obtain accurate counterfactuals the algorithm needs

to observe competitors’ prices and then be able to map them, together with

different selections of its own price, into profits (in our example this would

require knowledge of the residual demand curve). We have endowed our

perfect synchronous algorithm with this ability, but in many actual markets

accurate counterfactual updating may be impossible.

We now explore the behavior of algorithms that have access to less infor-

mation than our perfect synchronous but more information than our asyn-

chronous algorithms. In particular we leverage a relatively uncontroversial

additional bit of information: the knowledge that residual demand curves

slope (weakly) downward. That information allows us to employ a less accu-

rate form of synchronous updating. Hence, we call this synchrnous updating

using downward demand.
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Recall that di(p
∗, pkj ) is our notation for the demand received by the firm

at the price it chose in iteration k. Our counterfactual updating rules are

modified as follows. If p > p∗ and the current iteration’s perception of the

value at p is higher than what could be rationalized by assuming demand was

given by current demand, then we update the value of playing the counter-

factual price assuming that di(p, p
k
j ) = di(p

∗, pkj ), so that W k
i (p) is adjusted

downward. Similarly, if p < p∗ and W k
i (p) is lower than could be justified by

assuming that di(p, p
k
j ) = di(p

∗, pkj ), then W k
i (p) is adjusted upward by as-

suming that di(p, p
k
j ) = di(p

∗, pkj )). Formally the updating rules for different

p are36

p = p∗, W k+1
i (p∗) = α(p− c)di(p∗, pkj ) + (1− α)W k

i (p), (4)

p > p∗, W k+1
i (p) = αmin

{
(p− c)di(p∗, pkj ),W k

i (p)
}

+ (1− α)W k
i (p),

p < p∗, W k+1
i (p) = αmax

{
(p− c)di(p∗, pkj ),W k

i (p)
}

+ (1− α)W k
i (p).

Figure 4 shows the impact of taking the model in panel (b) of figure 2

(static Bertrand with asynchronous updating) and allowing updating to occur

in instances when the underlying values violate the assumption of downward

sloping demand. The minimum rest point is 2.03 and the maximum is 3.84.

The reason that the outcomes are markedly different to those in figure 2 is

that, by imposing the additional demand structure, W ’s attached to high

prices get updated downward frequently in early iterations (i.e. given that

36These rules are for p ≥ c. For p < c these are reversed.
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Figure 4: Price outcomes with synchronous updating using downward de-
mand
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Notes: Prices (vertical axis) by iteration (horizontal axis) from 100 simulations are shown. The lines, from bottom to

top, represent the min, 25th percentile, median, 75th percentile, and max of the distribution of prices in each period.

The model mirrors that in figure 2, panel (b), but for the addition of the ability of the algorithm to update all W (p)’s

using the assumption that demand slopes (weakly) downward.

W ’s are initialized at high values, in early iterations this happens whenever a

lower price is chosen). This means that the actions actually chosen, by both

firms, through the course of the learning process are much more likely to be

relatively low. The outcomes reported in figure 4 suggests that leveraging

minimal assumptions about the economic environment can have a significant

mitigating impact on any tendency for an asynchronous algorithm to gen-
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erate supra-competitive prices.37 Leveraging the downward sloping demand

assumption also dramatically increases the speed with which the algorithm

reaches a rest point. The speed increase is of at least an order of magnitude.

The example shown here, in which the assumption of downward demand

is explored, indicates that having a complete model of the economic environ-

ment is not necessary to significantly mitigate the propensity for an asyn-

chronous algorithm to generate high prices. Depending on the setting, other

justifiable assumptions may be able to be leveraged, whether in addition to

downward demand or as a substitute for it.38

5.2 β > 0: Algorithms that consider future returns

When β = 0, pricing algorithms that use asynchronous learning are expected

to generate rest points with supra-competitive pricing, but those that used

perfect synchronous learning will not. These results are independent of the

details of the algorithm, including the structure of the profit function and

the states that strategies can condition on. However the result for perfect

synchronous learning does not generalize to models with β > 0.

Recall that when an algorithm converges to a rest point, that point is

37Appendix A.2 shows the impact of this augmented procedure in an environment with
Logit demand. Mitigation still occurs, but is somewhat muted relative to the homogenous
Bertrand example.

38Examples might include: using the realizations of price and quantity to approximate
demand, using one or more mis-specified demand models, or using local regression ap-
proaches to approximate W ’s that are close to those that can be updated precisely (see
Farias et al. (2012) for a related approach in the context of computing approximate MPE
in dynamic oligopoly games).
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the only point in the recurrent class, and the conditions that the policies and

perceived values a perfect synchronous learning algorithm must satisfy at the

rest point are those of a REBE. If β > 0, the feasible but non optimal policies

at the rest point are updated using a correct measure of current profit but a

discounted continuation value which is not updated because the policies that

are not optimal are never actually played. To explore the implications of

this fact in a way that makes their relationship to the literature on repeated

games transparent, we consider models with history-dependent strategies.

To see the possible implications of not updating continuation values, it

suffices to consider a model where there are two possible actions and a state

space that consists of last period’s prices, that is

P = (p1, p2), and S = {(p1, p1), (p1, p2), (p2, p1), (p2, p2)}.

We consider the conditions that need to be satisfied for (p1i , p
1
j) to be a rest

point of this algorithm.

Since policies have converged, equation (2) guarantees that perceived val-

ues will also. Since states other than (p1i , p
1
j) are not recurrent, the value

associated with play at those points need not equal the discounted value

that would result were those states being visited repeatedly. The REBE

conditions for the rest point imply only that in the limit

Wi(p
1|p1i , p1j) = πi(p

1
i , p

1
j)+βWi(p

1|p1i , p1j), ⇒ Wi(p
1|p1i , p1j) = πi(p

1, p1)[1−β]−1,
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Wi(p
2|p1i , p1j) = πi(p

2
i , p

1
j) + βmaxy∈PWi(y|p2i , p1j) < Wi(p

1|p1i , p1j),

and the analogous conditions for firm j.

So for (p1, p1) to be a rest point, all we require is

[πi(p
1
i , p

1
j)− πi(p2i , p1j)] > β

(
max
y∈P

Wi(y|p2i , p1j)− [1− β]−1πi(p
1
i , p

1
j)
)
,

and the analogous condition for firm j. (Wi(p1|p2i , p1j),Wi(p2|p2i , p1j)) are not

constrained to be consistent with the returns that would actually be earned

were those policies actually played. Rather they are determined by the ran-

dom draws – either just those on initial conditions or, if there is experimen-

tation, in conjunction with the draws from experimenting.

These equilibrium conditions also determine what would happen were we

to force the algorithm to engage in “off the equilibrium” path behavior, for

example if we used the policies to simulate a path in which firm i chose price

p2. If maxy∈PWj(y|p2i , p1j) = Wj(p
2|p2i , p1j) firm j would respond in the next

period with p2. If this occurred and maxy∈PWi(y|p2i , p2j) = Wi(p
2|p2i , p2j),

then firm i would chose p2 in the next period, and if the analogous condition

held for firm j both firms would choose p2 in all subsequent periods. That

is (p1, p1) would look like it was supported by a “trigger price” strategy. So

trigger price strategies are consistent with a REBE, and hence with a rest

point to the perfect synchronous game.
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Figure 5: Price paths with richer state spaces and β = 0.95.
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(a) Perfect synchronous updating
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Notes: Prices (vertical axis) by iteration (horizontal axis) from 100 simulations are shown. The lines, from bottom to

top, represent the min, 25th percentile, median, 75th percentile, and max of the distribution of prices in each period.

The discount factor, β, is set equal to 0.95. Results are shown for firm 1. The model is parametrized as follows. Feasible

prices exist on a grid with 25 elements equally spaced between 0.1 and 10 inclusive. The state space contains the prices

of both firms in the prior period. The weight on current returns in updating is given by α = 0.1. Initial conditions are

i.i.d. draws from U [200, 210], for each W (p) for each firm. In all other respects the model mirrors that in figure 2.

Computational results when algorithms care about the future. Fig-

ure 5 provides price paths from AI algorithms that use perfect synchronous

and asynchronous updating when β = .95, the state space is expanded to

contain the prices each firm charged in the prior period, and demand is given

by equation (1).

As in figure 2, which provided the comparison when β = 0, the asyn-

chronous algorithm generates substantially higher price outcomes. Indeed

setting β = .95 using a richer state space generates a distribution of pricing
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rest points from the asynchronous algorithm that stochastically dominates

its analogue in the β = 0 case. However, the perfect synchronous algorithm

now also converges to a price that is higher than the static Nash outcome.

The median of the perfect synchronous price distribution is 6.25. This is sub-

stantially lower than the median price with asynchronous updating (which is

10), but substantially higher than the highest Nash price of 2.52. The rate of

convergence for the perfect synchronous algorithm is still substantially faster

than that of the asynchronous algorithm39.

These results extend the conclusions of Calvano et al. (2020) to games

played by AI algorithms that use perfect synchronous updating, but only if

β > 0. Moreover the theoretical discussion shows that when β > 0 the asyn-

chronous algorithm can generate policy patterns that mimic those obtained

from trigger-price strategies. However, a comparison among asynchronous

algorithms, that is among the algorithm that use the learning rules used in

Calvano et. al. (2020), which we investigate further in figure 6, throws a

slightly different light on the problem.

This figure displays the frequency of realized prices generated by alterna-

tive asynchronous algorithms. Light grey bars are the static model (singleton

state space and β = 0), medium grey bars are for an enriched state space

(containing the price of each firm in the prior period) but with β = 0, and

dark bars have the enriched state space and β = 0.95. As can be seen, there

39The perfect synchronous price distribution stabilizes after about 750,000 iterations,
while asynchronous price distribution does not stabilize until around 4,000,000 iterations.
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is little economically meaningful difference between the distribution of price

outcomes generated by the static model (light grey) and that generated by

the model augmented with an enriched state space (medium grey).40 So a

meaningful portion of any adverse price effect does not depend on leveraging

history-dependent strategies.

More visually noticeable are the differences when we set β = .95 and we

allow for history-dependent strategies; then the mean is 9.83 and the median

is 10. The relative increase in the mass concentrated on a price of 10 is

notable.

40The mean (and median) prices in the ‘static’ (light grey) and ’β = 0’ (medium grey)
cases are 8.33(8.34) and 8.73(8.75) respectively.
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Figure 6: Price outcomes for models with asynchronous updating.
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Notes: The frequency of realized prices (horizontal axis), after the asynchronous algorithm has reached a resting point,

is displayed. The model is the same as in figure 5 panel (b), with the following adjustments. Light grey bars are the

static model (singleton state space and β = 0). Medium grey bars are for an enriched state space (containing the price of

each firm in the prior period) but with β = 0. Dark bars have the enriched state space and β = 0.95 as in figure 5 panel

(b). For each version of the model, results are constructed from 100 simulations.

Keep in mind, however, that when β = 0 and we allow for history-

dependent strategies, the median price outcome is 8.75. So the asynchronous

algorithm generates a substantial increase in price even when it does not

consider the impact of its play on the possibility of punishing in the future.

That is, at least in our example, much of the difference between rest point
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Table 3: Pricing outcomes in extensions, when β = 0.95

Algorithm Treatment Min 25th Median 75th Max

Perfect synchronous N = 2 (as in Figure 5) 5.01 5.84 6.25 6.25 8.34
N = 2, Experimentation (θ = 4) 4.17 4.59 4.59 5.01 6.67
N = 3 2.51 3.34 3.34 3.34 5.84

Asynchronous N = 2 (as in Figure 5) 8.34 9.58 10.00 10.00 10.00
N = 2, Experimentation (θ = 4) 6.25 9.17 9.58 10.00 10.00
N = 3 5.42 8.75 9.17 9.58 10.00

Synchronous using
downward demand N = 2 3.75 6.67 7.50 7.92 10.00

Notes: For each treatment, 100 simulation runs were conducted. The minimum, 25th percentile, median,

75th percentile, and maximum of the prices for firm 1, across the 100 simulations, once all simulations have

reached a rest point, is reported. The monopoly price is 10. Prices of 2.09 and 2.51 are both supportable as

outcomes of a static Nash equilibrium. Experimentation occurs for the first 10 million iterations. The model

is as per figure 5, but for the noted changes in specification.

prices and Nash equilibrium prices generated by an asynchronous learning

algorithm would exist even if we did not allow the algorithm to generate

policies that mimic a punishment scheme.41

Extensions when β > 0. Table 3 reports the results of extensions to the

basic specifications for perfect synchronous and asynchronous learning pre-

sented in figure 5. For both it begins by reporting results for the simula-

tions underlying figure 5. As noted when β = 0.95 and the state space in-

cludes the previous period’s prices, both learning algorithms generate supra-

41Appendix A.3 illustrates two examples of the path of play following an optimal devi-
ation from a rest point reached by the asynchronous algorithm.
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competitive pricing outcomes with the distribution of prices generated by

the asynchronous algorithm stochastically dominating that generated by the

perfect synchronous algorithm.

The introduction of experimentation in this setting mirrors the qualita-

tive results in table 2. Experimentation appears to have a mild mitigating

impact on price elevation in both cases. However the effect is not as large

as the effect of introducing a third firm in either case, with the difference

being particularly noticeable for the perfect synchronous case. Perhaps most

surprising is the impact on the asynchronous algorithm of imposing that the

residual demand curve is decreasing in price (see section 5.1). This has a

greater downward impact on the price distribution, at all reported moments

other than the minimum, than adding an extra firm42. With rich state spaces

and β > 0, use of algorithms that abide by at least some information about

the economic environment may be at least as important for pricing as in-

creasing the number of firms in the market.

6 Conclusion

The results in this paper relate to contemporary policy discussions about

appropriate competition policy in a world in which decisions are delegated

to algorithms. We illustrate the impact of the design on equilibrium prices.

Much of this policy discussion has centered on traditional antitrust tools,

42Leveraging this tenet would have no additional benefit for the perfect synchronous
algorithm.
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particularly laws prohibiting collusion.43 The results here present significant

challenges for the application of those traditional tools. We show the poten-

tial for algorithms to lead to supra-competitive pricing in settings where, as

in Harrington (2018), it cannot match any economic definition of collusive

behavior.

We have not explicitly discussed the choice of algorithms. Of course,

even if a firm understands that choosing a naive (e.g., asynchronous) algo-

rithm will lead to supra-competitive pricing and, as a consequence, delegates

its pricing to such an algorithm, this is distinct from doing so in concert

with other firms as part of some commitment or agreement. Figure 7 shows

the pattern of average (rest point) payoffs arising from alternative choices

of algorithmic designs given the simulations reported in this paper for the

static Bertrand model. It is a Nash equilibrium for both firms to choose to

implement asynchronous algorithms. Indeed, no matter what a rival firm

implements, each firm is weakly better off with the asynchronous algorithm.

That is, employing an asynchronous algorithm is a weakly dominant strat-

egy.44

That the choice of algorithms leading to supra-competitive pricing could

be an equilibrium outcome in a static game, seems at odds with the require-

ment that illegal cartels have some form of agreement at their core. This

conclusion resonates with ongoing expressions of discomfort, on the part of

43See, for instance, the discussion in Harrington (2018).
44In the Logit version of the model discussed in the Appendix, employing the asyn-

chronous algorithm is a strictly dominant strategy.
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Firm Y

Asynch. Sync.

Firm X
Async. (8.12, 8.12) (2.13, 2.13)

Sync. (2.13, 2.13) (2.13, 2.13)

Figure 7: The algorithm coordination game

Notes: The payoffs reflect the pattern of expected payoffs reported in figure 2 and Appendix A.5.

antitrust scholars, with the heavy emphasis that cartel enforcement puts on

finding an agreement (see for instance, Turner (1962), Posner (1976), Whin-

ston (2006), Kaplow (2013), and, in the context of algorithms specifically,

Harrington (2018)).

Whether through regulation, or through antitrust oversight, the question

of how to identify a “pro-competitive” implementation of an algorithm seems

to be central to any evaluation exercise that a regulatory agency might con-

duct. Most likely this requires access to the underlying code.45 At least the

results in this paper point toward pro-competitive implementations being

those that are informed by an understanding of the wider economic environ-

ment and that incorporate counterfactual alternatives to the play actually

engaged in when learning. Thus, indicia of the possible existence of a “pro-

competitive” implementation may include the incorporation of a demand

model, likely informed by statistical or econometric studies (such as A-B

testing) to generate returns to alternative actions. Training the algorithm

using results from sub-populations on whom price experiments have been run

45Alternatively, simulations using the program may allow inferences along these lines
to be mode. This may be necessary if the program can be used to generate pricing
recommendations, but access to underlying code is restricted.
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may also be a useful indicator of an “pro-competitive” algorithm.46 Addi-

tionally, the greater the number of firms in a market, the more muted any

supra-competitive pricing is likely to be.47

Developing an empirical understanding of how algorithm adoption im-

pacts pricing, and the choices the algorithms that are actually used gives

management, seems invaluable. Empirical studies of the nature and the

impact of AI pricing algorithms that have been adopted are one way of eval-

uating the relative merits of human and algorithmic control of pricing in

markets. Assad et al. (2020) provides a valuable first step in this direc-

tion. Additional research in this vein, guided by the growing theoretical and

computational work on algorithms, strikes us as particularly valuable.

46Here the sub-populations should be small enough to have no meaningful impact on
the pricing of any competing firm, and exist merely to inform the computation of coun-
terfactual returns. If experimentation occurs on sub-populations that are large, then the
possibility may arise that experimentation distorts algorithmic learning.

47Additionally, conditional on the design of the algorithm, the more algorithms are
trained to optimize current rather than future profits, the better for competition. Similarly,
the less information about competitors’ actions that resides in the state space, the better.
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A Appendix

A.1 Code for the baseline

The code below, comprises the core content of the m-file required to run

the baseline model in Matlab. It is included here to assist the reader in

understanding implementation. The code was run in Matlab version R2015a.

%------------Set parameters ----------------------------%

theta=10; D=1; nfirms=2; c=2; alpha=.1; beta=0;

pL=0.01; pH=theta; dim=100; p=(linspace(pL,pH,dim))’;

%------------Set updating protocol-----------------------------%

synchronous = 0;

%------------Initialization-----------------------------%

rng(2); W = []; W(:,1,1) = 10+10*rand(dim,1); W(:,1,2) = 10+10*rand(dim,1);

itermax=10000; h=[]; pstar=[]; k=1;

%------------Loop through learning periods-----------------------------%

while k<=itermax

%------------determine price chosen-----------------------------%

for i=1:nfirms

[piestar2, m] = max(W(:,k,i)); pstar(i,k)=p(m,:);

end

%------------Updating-----------------------------%

for i=1:nfirms

pstaro(i,k)= pstar(i,k); pstar(i,k)=pH+1;

prival=min(pstar(:,k)); nshares=sum(pstar(:,k)==prival) + 1;

less= find(p<prival);

equal= find(p==prival);

above= find(p>prival);
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W_all(less,k+1,i)= D*(p(less)-c);

W_all(equal,k+1,i)= (1/nshares)*D*(p(equal)-c);

W_all(above,k+1,i)= 0*(p(above)-c);

W(:,k+1,i) = W_all(:,k+1,i);

if synchronous == 0

W(:,k+1,i) = W(:,k,i);

m = find(pstaro(i,k) == p);

W(m,k+1,i) = W_all(m,k+1,i);

end

W(:,k+1,i)=W(:,k+1,i)*alpha + W(:,k,i)*(1-alpha);

pstar(i,k)= pstaro(i,k);

end

k=k+1;

end

This code is used as the base for producing all the figures. For instance,

figure 2 uses this base code, and loops over 100 simulation iterations, with a

new set of initial condition draws in each iteration.

A.2 Results for a Logit demand system

This subsection reports results reproducing the core static computational

analysis in the main text, but substituting the perfect substitutes demand

system for a logit style demand system in which each firm’s product is differ-

entiated. As in the model considered in the main text, firms play a Bertrand
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Table 4: Pricing outcomes with Logit demand

Algorithm N Minimum 25th Percentile Median 75th Percentile Max

Perfect synchronous 2 2.53 2.53 2.53 2.53 2.53
3 2.33 2.43 2.43 2.43 2.43
5 2.33 2.33 2.33 2.33 2.33
10 2.23 2.23 2.33 2.33 2.33

Asynchronous 2 6.17 8.13 8.59 9.19 10.00
3 2.63 4.95 6.37 7.93 9.80
5 2.23 2.43 2.43 2.63 9.90
10 2.13 2.33 2.43 2.43 2.73

Asynchronous 2 2.33 2.63 2.89 3.59 9.60
w. downward demand

Notes: For each N , 100 simulation runs were conducted. The distribution of prices for firm 1, once all

simulations have reached a rest point, is reported. The model is as per figure 2, but for the substitution

of the Logit demand system described in equation 5 and the reported changes in N . ‘downward demand’

specifications mirror those discussed in section 5.1.

pricing game. The form of the demand system is

Qi =
ea−bpi

1 + ea−bpi +
∑

j 6=i e
a−bpj

(5)

where Qi is the quantity demanded of firm i’s product. The parameters

are set such that a = 40 and b = 4. In all other respects, the model and

parametrization (including the selection of initial values) are unchanged from

that underlying figure 2.

Table 4 shows the distribution of rest points reached in this new pric-

ing game as the number of firms varies. It shows that the core results are
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qualitatively unchanged in the alternative Logit demand environment.48

A.3 Policies in the repeated game with asynchronous

learning

Figure 7: Price paths following an optimal deviation
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Notes: The underlying model is that in figure 5, panel (B).

Figure 7 provides examples of the path of play, for two simulations, with

different initial conditions, in the repeated game with asynchronous learning.

The path of play is at the rest point in the first 20 periods (p = 10). At period

48Differences in time taken to reach a rest point are also qualitatively similar. For N = 2,
it takes 2,910 iterations to reach the reported distribution in the asynchronous case, and
100 iterations in the perfect synchronous case.
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21, firm 1 drops the price by an increment (this perturbation is imposed

exogenously). Firm 2 responds according to the policies in memory (the AI

does not do any learning in this sequence of play). Figure 7 shows the path

of play of firm 2, in each of the two simulations selected as examples. As can

be seen, both paths bounce around a lot for the 20-30 periods following the

deviation and then settle down. One settles down at a constant price, while

the other settles into a regular oscillating pattern.

A.4 Results for a Cournot game

This subsection reports results reproducing the basic core static computa-

tional analysis in the main text, but replacing the Bertrand game with a

homogenous good Cournot game. The form of the demand system used in

this new game form is

Q = a− P (6)

where Q =
∑

i qi, qi is the chosen output of firm i and P is the market

price. The model is parameterized such that the demand intercept, a, is

equal to 10. Quantities (qi’s) can take on 150 values evenly spaced between

1.51 and 3, inclusive. Initial conditions are set such that each initial W (q)

is an independent draw from U [25, 35]. In all other respects the model and

parametrization are unchanged from that underlying figure 2.

Table 5 shows the distribution of rest points reached in this new pricing

game for N = 2. It shows that the core results are qualitatively unchanged
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Table 5: Pricing outcomes in Cournot

Algorithm N Minimum 25th Percentile Median 75th Percentile Max

Perfect synchronous 2 4.67 4.67 4.67 4.67 4.67

Asynchronous 2 5.24 5.65 5.84 6.00 6.42

Notes: For each N , 100 simulation runs were conducted. The distribution of prices once all simula-

tions have reached a rest point is reported.

in the Cournot environment, illustrating that the patterns are not specific to

games of strategic complements. The same patterns can be seen in games of

strategic substitutes.49

A.5 Results when one firm learns with an asynchronous

algorithm and one with a perfect synchronous al-

gorithm

This subsection reports results for the model underlying figure 2, with the

adjustment that one firm’s algorithm uses perfect synchronous updating,

while the other uses asynchronous updating. Table 6 reports moments of the

resulting price distribution when N = 2.50 Results for Logit demand (see

section A.2) are also reported.

49Differences in time taken to reach a rest point are also qualitatively similar. It takes
6,706 iterations to reach the reported distribution in the asynchronous case, and 346
iterations in the perfect synchronous case.

50It takes 950 iterations to reach the reported distribution
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Table 6: Pricing: Asynchronous versus perfect synchronous

Algorithm N Minimum 25th Percentile Median 75th Percentile Max

Homogenous Bertrand
Perfect synchronous (Firm 1) 2 2.13 2.13 2.13 2.13 2.13
Asynchronous (Firm 2) 2 2.13 2.13 2.13 2.13 2.13

Differentiated Bertrand (Logit)
Perfect synchronous (Firm 1) 2 2.73 2.94 3.69 4.45 7.28
Asynchronous (Firm 2) 2 2.84 3.14 4.10 4.95 7.98

Notes: For each N , 100 simulation runs were conducted. The distribution of prices once all simulations have

reached a rest point is reported.
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