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Firms increasingly delegate their pricing
to algorithms that exploit detailed data on
customers’ preferences and that, in some in-
stances, use a learning process to develop
strategies to play an oligopolistic pricing
game. Policy makers and researchers have
raised the concern that this may diminish
the competitiveness of markets, and even
lead to collusive behavior.1

This paper investigates how the design
of artificial intelligences’ learning proto-
cols can lead to competitive or supra-
competitive price outcomes, when compet-
ing in a simple Bertrand pricing game. We
begin by describing the pricing game (sec-
tion I) and then the details of the AIs’ learn-
ing protocols that will ultimately shape
play and pricing outcomes (section II). We
then discuss the results (section III) and
conclude with some broader observations
(section IV).

I. The Bertrand pricing game

Consider two firms i ∈ {1, 2} with equal
marginal costs, c1 = c2 = 2 . Firms sell
a homogenous goods and compete by set-
ting prices. We discretize the set of feasi-
ble prices to be 100 equally spaced numbers
between 0.01 and 10, inclusive. Denote this
set of feasible prices to be P = {p1, ..., pM}.
The price of firm i is denoted pi ∈ P. We
assume that consumers buy from the firm
with the lowest price. In case of a tie, firms
split demand equally. We parameterize the
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model such that demand faced by firm i is

di(pi, pj) =


1 if pi < pj and pi ≤ 10
1
2

if pj = pi and pi ≤ 10

0 otherwise

There are two Nash equilibria for this
(static) Bertrand game. The first one is
pi = pj = 2.0282. The second one is
pi = pj = 2.1291.2

We allow this stage game to be repeated
many times. This repetition allows the AIs,
which set firms’ prices, to learn to play. Ul-
timately we are interested in the pricing
outcomes that the AIs converge to.

II. Design features of a pricing AI

The Artificial Intelligence Algorithms
(AIAs) playing this Bertrand pricing game
use a reinforcement learning algorithm.3

The AIAs in this paper do not value the
future (that is, they only value profit in the
current period). This rules out ‘collusive’-
style equilibria in which play is shaped by
perceptions of the future returns flowing
from a present action.4

In this simple setting, a reinforcement
learning algorithm has the following ingre-
dients:

(1) A set of values for every algorithm
(equivalently, firm) which can be inter-
preted as the algorithm’s perception of

2This equilibrium structure is a consequence of the

set of feasible prices being discrete. If prices were con-
tinuous, this would reduce to the familiar undergraduate

example in which p = c is the equilibrium. We assume

firms do not have capacity constraints.
3We use variants of Q-learning, as discussed by

Watkins and Dayan (1992). For a survey of reinforce-

ment learning algorithms, see Sutton and Barto (2018).
4Similarly, the state space is a singleton, ruling out

history-dependent strategies. Asker, Fershtman and
Pakes (2021) contains a more general discussion in which
AIs may put a positive weight on future profits, and

obtain results which are qualitatively similar to those
presented here.
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the expected profit conditional on set-
ting each feasible price. That is, for
every firm i, in each period k,

Wk
i = {W k

i (p)}p∈P .

(2) A method for choosing the price,
pki in every period, conditional on
Wk

i . Here, the AIA chooses pki =
arg maxp∈P{W k

i (p)}.

(3) An updating rule: The updating rule
uses the information the firm observed
during that period to update Wk

i to
generate Wk+1

i .

The updating rule determines how the
algorithm learns the returns to an action.
In period 1, initial values of Wk

i need to
be imposed. Here, W 1

i (p) ∼i.i.d U(10, 20).
This sets all starting values higher than
monopoly profits and so encourages explo-
ration during the AIAs’ learning process5.
In subsequent periods, updating can occur
in a number of ways. We consider three
approaches, which vary in the amount of
information required and in economic so-
phistication.

(i) Asynchronous Updating: Only W k
i (pki )

is updated, where pki is the price cho-
sen by i in period k. Given a speed-of-
learning parameter, α

W k+1
i (pki ) = απ(pki , p

k
j )+(1−α)W k

i (pki ).

and W k+1
i (p) = W k

i (p) for all p 6= pki .

(ii) Synchronous Updating: W k
i (p) is up-

dated for all prices with an esti-
mate, denoted πe(p, pkj ), of what profits
would have been had the firm chosen
each price p ∈ P, i.e.

W k+1
i (p) = απe(p, pkj ) + (1− α)W k

i (p).

Algorithms using asynchronous or syn-
chronous updating require access to dif-

5In our example exploration is induced by high ini-
tial conditions, but one could also explore through peri-
odic choice of policies which do not maximize perceived
values, see Asker, Fershtman and Pakes (2021) and the

literature cited there.

ferent amounts of information. Asyn-
chronous updating only requires knowledge
of the profits received from the price ac-
tually played. The amount of information
synchronous updating requires depends on
how profits from counterfactual prices, i.e.
πe(p, pkj ) for p 6= pki , are calculated.

One extreme is when the algorithm sees
the competitors price and knows the de-
mand and cost functions. Then it can
calculate what actual profits would have
been had the algorithm played a differ-
ent price. A much weaker assumption is
that all the algorithm knows is that de-
mand slopes downward. Then if p > pki
and W k(p) > (p − c)q(pki , p

k
j ), we use the

updating equation in part (ii) above with
πe(p, pkj ) = (p − c)q(pki , p

k
j ), as downward

sloping demand implies that profits could
not be as high as W k(p).

Similarly, if p < pki and (p− c)q(pki , pkj ) >

W k(p) then πe(p, pkj ) = (p − c)q(pki , p
k
j ).

If neither of these conditions are met
W k+1(p) = W k(p).

We call the first case, the case in which
the algorithm can calculate counterfactual
profits exactly, perfect synchronous updat-
ing. Its observational and computational
requirements typically grow with increases
in the complexity of the underlying model
(more firms, differentiated products, ...).
We call the second case synchronous updat-
ing using downward demand. Note that all
it ever requires in addition to the current
profits needed for the asynchronous case is
knowledge of the quantity actually sold dur-
ing the period.

III. Results

Figure 1 summarizes pricing outcomes
when both firms use asynchronous updat-
ing, perfect synchronous updating, and
downward sloping demand (panels (a), (b)
and (c), respectively). Each panel shows
outcomes from 100 simulations, which differ
only in the initialization of Wk

i . There are
five lines in each of the panels. From bot-
tom to top these are, by period, the min,
25th percentile, median, 75th percentile,
and max price across the 100 simulations
that were run. Panel (d) provides an exam-
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(a) Asynchronous updating
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(b) Perfect synchronous updating
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(c) Synchronous updating using downward demand
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Figure 1. : Price outcomes with different algorithm designs

Note: Panels (a), (b) and (c): Prices (vertical axis) by period (horizontal axis) from 100 simulations are shown.
The lines, from bottom to top, represent the min (thin, black, solid line), 25th percentile (thin, grey, dashed line),
median (thick, black, solid line), 75th percentile (thin, grey, dashed line), and max (thin, black, solid line) of the
distribution of prices in each period. Results are for a static Bertrand market with two firms selling homogeneous
goods.. Results are shown for firm 1. The model is parametrized as follows. Demand, Q = 1 if P ≤ 10, zero
otherwise. Marginal cost = 2. Feasible prices exist on a grid with 100 elements equally spaced between 0.1 and 10
inclusive. Ais put a zero weight on future profits (the future is discounted to zero). The weight on current returns in
updating is given by α = 0.1. Initial conditions are i.i.d. draws from U [10, 20], for each W (p) for each firm. In panel
(a) only every 10th period is shown. In panel (a) the min, 25th percentile, median, 75th percentile and max values
after 5000 periods are: 5.06, 7.33, 8.34, 9.14 and 10, respectively. In panel (b) the min, 25th percentile, median, 75th
percentile and max values after 500 periods are all equal to 2.1291. In panel (c) the min, 25th percentile, median,
75th percentile and max values after 500 periods are: 2.0282, 2.129, 2.1291, 2.23, and 3.84. Panel (d): Prices
(vertical axis) by period (horizontal axis) are shown for a firm 1, during a single simulation chosen from the 100 run
to generate panel (b). Hollow, light grey, circles indicate (chosen) prices for which the W (p) is updated downward.
Solid, heavy black, circles indicate (chosen) prices for which the W (p) is updated upward.
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ple of the convergence process for the asyn-
chronous updating case.

Panel (a) shows the price distribution, by
period, when both firms use asynchronous
updating. Convergence is relatively slow,
but after 4600 periods none of the paths
generated in any of the 100 simulations
change and all of the percentiles stay con-
stant. Most notably all simulations reach
rest points that are significantly higher than
the Nash equilibrium prices. The median
price is 8.34 and the minimum is 5.06. Note
also that all quantiles tend to increase over
the course of the learning process; i.e., they
move away from the Nash equilibria.

By contrast, when the AIAs learn via
perfect synchronous updating (panel (b))
prices converge quickly to Nash pricing lev-
els. In this instance, prices, across all 100
simulations, settled on 2.13 after approxi-
mately 105 iterations. Thus learning was
much faster, prices converge to a static
Nash equilibrium6, and initial conditions
had no influence on the limiting prices.

Panel (c) implements a synchronous pro-
tocol which exploits the economic premise
that demand slopes downward. This adds
simple economic reasoning to the asyn-
chronous algorithm without imposing the
observational and computational require-
ments needed for the counterfactuals calcu-
lations used in perfect synchronous updat-
ing. In panel (c) the minimum rest point
is 2.03 and the maximum is 3.84. Recall
that the desire to explore alternative poli-
cies induced a choice of high initial values.
The reason that the outcomes in panel (c)
differ so markedly from those in panel (a)
is that imposing downwardly sloping de-
mand insures that the W ’s attached to a
higher price than the price actually played
can only be updated downward.

The outcomes in panel (a), in which
both firms use asynchronous updating, con-
trast with the outcomes generated in pan-
els (b) and (c). This is true for both
the speed of convergence and the ultimate
prices that are realized. In particular panel

6In the static case one can prove convergence to Nash

more generally, without assuming a particular structure

for demand. See Asker, Fershtman and Pakes (2021).

(c) suggests that leveraging minimal as-
sumptions about the economic environment
can have a significant mitigating impact
on any tendency for an asynchronous algo-
rithm to generate supra-competitive prices
and also dramatically decreases the itera-
tions needed until convergence.

Panel (d) provides more detail on the
convergence process occurring when firms
use asynchronous updating. For a single
simulation run, the prices chosen by firm
1’s AI are shown with circles. The hol-
low, small, light grey circles indicate cho-
sen prices for which the W k

1 (pk1) is updated
downward; solid heavy black circles indi-
cate chosen prices for which the W k

1 (pk1) is
updated upward. In panel (d) prices con-
verge to 8.89 in period 1,645. The fact that
the initial condition draws are higher than
monopoly profits implies that in early pe-
riods the evaluations fall. That is when a
price pk1 is chosen it generates a lower profit
than the W k

1 (pk1) associated with pk1 , and so
W k+1(pk1) is lower than W k

1 (pk1). Eventually
the initial valuation of some other price is
higher than the profit earned from the given
price, so some other price will be chosen.

The first time the chosen price, pki , gen-
erates a profit that is higher than W k

1 (pk1)
is in iteration k = 1, 119. This leads to an
upward adjustment and a solid black circle
in the panel (d). As long as the price of
the rival is not reduced to match or un-
dercut the price, firm i does not change
its price. Since at k = 1,119 the rival’s
price is greater than p11191 , it obtains no
profits and W 1119

2 (p11192 ) is updated down-
ward. Eventually it chooses a different price
which, if equal to or lower than p11191 , gen-
erates positive profits. If the rival’s new
price is lower, firm 1’s profits go to zero
and its evaluation of p11191 falls. However if
the rival were to chose p11191 both firms earn
positive profits. If, in addition, at that k,
π(pk, pk) ≥ max[W k

i (p),W k
j (p)], the algo-

rithm will have converged to pk. In panel
(d), the two firms match on price 22 times
before converging in period 1,645.7

7By contrast, convergence for AIs using a syn-

chronous algorithm follows, after a small amount of ini-
tial randomness, a best response dynamic.
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The comparison of outcomes in panels
(a), (b) and (c) illustrates the importance
of the learning (or updating) process in de-
termining the outcomes that may emerge
when AIs play against each other. At least
for this particular setting, asynchronous up-
dating leads to supra-competitive (‘high’)
prices. Importantly, this happens in a
setting in which firms do not care about
the future and are unable to play history-
dependent strategies. Thus, though stan-
dard collusive equilibria of the sort familiar
from the repeated game literature are not
feasible, the asynchronous algorithm always
generates rest point prices that are signif-
icantly above the Nash equilibrium values.
This is a consequence of the convergence
process that occurs when asynchronous al-
gorithms play against each other in an
environment with exploration. By con-
trast, synchronous updating leads to pric-
ing that is in line with what economists
would think of as a competitive outcome
(the static Nash equilibrium in prices).
When asynchronous algorithms are imbued
with some limited economic sophistication
(here, by allowing them to understand
that demand slopes downward), the supra-
competitive prices asynchronous algorithms
generate are substantially mitigated, and
the speed of convergence is greatly acceler-
ated. This suggests that an understanding
of the competitive impacts of algorithmic
pricing games requires knowledge of how
the algorithms learns.

IV. Concluding remarks

These results are presented in a setting
in which the AIAs do not care about fu-
ture payoffs and history-dependent strate-
gies are not possible (the state space is a
singleton). If these restrictions are relaxed
‘collusive’-type strategies becomes possible
(see Calvano et al. (2020)). By ruling out
the potential for this ‘collusive’-type play,
this paper illustrates an additional chan-
nel through which market interaction be-
tween AIAs can lead to price elevation, and
shows that the design of the learning pro-
tocol at the heart of the AIA can be a key
determinant of the extent to which pric-

ing outcomes are competitive. In related
work, we verify that even when AIAs care
about the future and state spaces allow for
history-dependent strategies, the nature of
the learning protocol is likely to still have an
economically significant impact on the de-
gree to which prices are supra-competitive
(see Asker, Fershtman and Pakes (2021)).
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