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1 Preliminaries: Auctions

This handout is intended to give you a map to what will be covered in the 3 hrs or so I will be

talking about modern structural auction empirics. Basically, what I want to do is to give you

an introduction to the core technical tricks currently used to analyze auctions and (perhaps more

importantly) give you the tools to access current research in the area.

Likely, there is more material here than we will be able to go through so I might be selective.

Here are some useful sources/core things to be familiar with:

• Guerre, Perrigne and Vong (2000), Optimal Nonparametric Estimation of First Price Auc-

tions, E’metrica, 68, 525

If you were to read anything following class, pp.525-532 of this article would be a good

start.

• Li and Vong (1998), Nonparametric Estimation of the Measurement Error Model Using Mul-

tiple Indicators, Journal of Multivariate Analysis 65, 139-165

Probably not a journal you have spent a lot of time reading, but these techniques are key

to many of the identification results in auctions. If you were to read another thing following class,

pp.139-145 of this article would be a good.

• Asker (2008), A Study of the Internal Organization of a Bidding Cartel, American Economic

Review 2010.
∗Email: johnasker@econ.ucla.edu, www.johnasker.com
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The reason I will talk about this is because it is a good example of a pure application of the

technique. Much of that literature is at least partially motivated by a desire to explore econometric

methods, and it is helpful to be reminded that this doesn’t need to be the case to right a paper

people will pay attention to. It also speaks directly to topic 2, which is collusion.

• Haile, Phil and Elie Tamer (2003), Inference with an Incomplete Model of English Auc-

tions,JPE, 111, 1-52

This paper is very different from the above three in terms of setting and technique. It

uses a partially identified model to sidestep a bunch of thorny issues in the estimation of English

auctions. It is also a beautiful piece of research.

• Athey, Susan and Phillip Haile (2005a), Non-Parametric Approaches to Auctions at

http://www.econ.yale.edu/˜pah29/hbk.pdf

This is a handbook chapter now I think in the Handbook of Econometrics V6A. Anyway,

this is a great survey to look at to see how stuff is done and also the bibligraphy is super

useful.

• Pagan and Ullah, Nonparametric Econometrics. This is the most useful econometrics book

to give you a foundation in density estimation etc. Harry Paarsch also has a very useful text

called An Introduction to the Structural Econometrics of Auction Data which has a partic-

ularly useful appendix that goes through heaps of the toolbox technique with a useful focus

on auction problems. The last econometric reference worth mentioning in an introduction is

Joel Horowitz’s Bootstrap chapter in the handbook of econometrics v5.

2 Auction Empirics: Preliminary Comments

2.1 What is the point of empirical work on auctions?

The next three or so hours will be on recent empirical work on auctions. There are several reasons

for teaching this vibrant area of research:

• it introduces the ideas behind identification in structural models in a formal yet digestible

way
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• asymmetric information is one of the most fertile areas for empirical work: auctions present

an easily understandable environment for examining the impact of assym. info issue (ie we

can see the rules of the game, understand the strategy set etc)

• my suspicion is that the tools developed in the auction literature could be adapted to other

environments (e.g. flick through Laffont and Tirole for some examples of theory models in

this spirit - whether they have direct empiricial application is another question)

• auctions can be thought of as a kind of monopoly model (the auctioneer has monopoly

power, but less than perfect information and limited capacity, for a similar view see Bulow

and Klemperer)

• something like 10% of GDP is transacted through auction markets and their design and

application has been, and continues to be, a topic of ongoing interest to both policy makers

and business.

Basically auctions are more central to IO than most economists think.

The pattern of these lectures will go something like

1. what is the point of empirical work on auctions? + themes

2. review of the theory

3. basic empirical results in first price auctions

4. basic empirical results in ascending auctions

5. extensions: auction heterogeneity & bidder heterogeneity

There are several reasons for empirical work on auctions

• Validating basic assumptions: the theory makes a big deal of the role of asymmetric infor-

mation. To be confident that our models mean anything we should send some time making

sure that asymmetric information does, indeed, matter. This is how I think of much of the

contributions made by Hendricks and Porter

• Testing theory: Theory makes some pretty specific predictions about how model primitives

map to outcomes. These seem worth testing. Experimental work has been successful here.

Read the Handbook of Experimental Economics Chapter for an introduction to this fruitful

area of experimental work.
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• Evaluating policy: the optimality of design decisions usually depends on the properties on

the underlying primitives we can divide these into two areas:

– Uncovering the specific distribution of private information: in a FPSB IPV single unit

auction the reserve price depends on the specific distribution of private information

– Uncovering the properties of the structure of private information: in a single unit auction,

the attractiveness of the FPSB auction depends on whether we are in the IPV or common

value environment or some other private info structure.

The recent work has been on the last dot point mostly. I will talk mostly about the work that

seeks to evaluate policy by uncovering the underlying distribution of private information. Testing

private values vs common values tends to build on this anyway, often using auxiliary data.

2.2 What are we really talking about?

The problem is: given bid data and observable characteristics of the auction and bidders, what can

we say about the private information possessed by the bidders when they make bids?

Let’s start by defining an auction:

The standard simple auction model has

• N bidders

• one indivisible good for sale

• each bidder has some private information represented by a parameter θ ∈ R. This sets either

values or costs depending on whether we are in a procurement setting or not.

• the auctioneer has a utility function which is given by

V = v − p or V = p− v

again depending on whether we are in a procurement setting or not (procurement is first)

• the bidders have a utility function which looks like

Un = p− θ or Un = θ − p

It should be obvious that having bidders as buyers or sellers is just a sign change. Since each

are equally relevant empirically, I will use whichever is most appropriate for the application.
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• we need a joint distribution for the bidders’ private information so let {θ1...θN} be drawn

from the joint CDF F ∈ F·

• the auction also needs some rules for allocating the winner and payments and saying what

permitted bids are. Let G denote the set of all distributions over the space of permitted bids.

You should have covered the equilibrium theory of auctions in Micro last year. If you are hazy

on that, look through Krishna’s excellent text book which I recommend buying as a reference. I

will cover it very fast today.

The equilibrium theory gives us a way to map from the private information to bids (which may

or may not be the same as the prices (transfers) arising from the auction). Lets call this mapping

from the theory γ ∈ Γ where γ : F→ G.

2.2.1 Identification

The key idea of these lectures is identification. In most contexts what this means is that given an

observed distribution of bids we can say identify a distribution of private information that is ”most

likely” or has the ”best fit” or slightly more formally minimizes the loss function of your choice.

I find it useful in structural modeling to draw the distinction between model identification and

identification in data

Lets be formal about model identification:

Definition 1 (Identification). A model (F,Γ) is identified if for every
(
F, F̃

)
∈ F2 and (γ, γ̃) ∈ Γ2

, γ (F ) = γ̃
(
F̃
)

implies (F, γ) =
(
F̃ , γ̃

)

This gives us some hope that with real data we can invert the mapping provided by the bid

function to get the the private information and thus estimate F . Often we will take a stand on γ

which will make the identification of F much more tractable.

Lastly, bear in mind the difference between this view of identification, which is, in a sense,

asymptotic, and the practical issue of identification in small samples which is the problem you

always face when confronted with data (identification in data).

It is always possible that a model is identified in theory but places demands that the data at

hand cannot meet. Always think about this when considering your own research and that of others.

This often comes down to judgement but there is some science that can help: things you can do to

develop some intuition about your situation

• run monte carlo simulations

• plot the data to examine the available variation in exogenous variables
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• look at what other researchers were able to do with similar technology and data

3 Review of Theory

Notation

• random variables in upper case, realisations in lower case

• vectors in bold

• latent variable CDF is FY (·)

• observed variable CDF is GY (·)

• where order statistics are used let:

– Y k:n be the kth order statistic from the sample {Y1,...,Yn} with Y1 < Yn

– F k:n
Y (·) is the CDF of this order statistics

Basics

• we consider the sale of a single indivisable good to one of n bidders where n ≥ 2

• bidders are risk neutral

• N is the set of bidders (where bidders are ex ante symmetric this is not so as important as

n = |N | will be a sufficient statistic for our purposes)

• N−i are the opponents of bidder i

Private Information

bidders’ private information (or type) is a scalar random variable Xi, X = {X1, ..., Xn}

• we have a scalar signal Xi with realisation xi

• we assume signals are informative in that

∂E [Ui |Xi = xi, X−i = x−i ]

∂xi
> 0 ∀x−i

so no matter what the signal of the other guys are, my signal always has an impact on the

expectation of my utility. Among other things this rules out any one player having a perfect

signal in, say, a mineral rights model.

6



• We often use Ui and Xi interchangeably as one is just a monotonic transformation of the

other. (note that in some procurement settings this will not make sense, but everything I

talk about here works this way)

• Lastly, N , FY (·) are common knowledge

Auction Terminology

The auction literature has been around for a long time and a terminology has grown up around

it that you should know. So lets run through it.

Definition 2 (Private Values). Bidders have private values if

E [Ui |Xi = xi, X−i = x−i ] = E [Ui |Xi = xi ] ∀xj and Ui

Definition 3 (Common Values). Bidders have common values if

E [Ui |Xi = xi, X−i = x−i ]

is strictly increasing in xj for all i, j and xj

• This division is not exhaustive, but is the space in which most people work. Note in particular

that it does not include the work on auctions with externalities by Phillippe Jehiel, Benny

Moldovanu and Ennio Stacchetti

• Common values can have the winners curse. The precise meaning of this differs depending on

the literature you are reading. In most economics it means the possibility that people have

some ex post regret from winning the auction. However, it can also refer to the behavioral

phenomenon of people bidding too high relative to the equilibrium and making a loss in

expectation.

• A further breakdown is between the independence of signals and affiliation of signals

• Independance means that

fXi,Xj = fXifXj

where fZ is the marginal distribution of Z

• Affiliation is defined as follows
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Definition 4 (Affiliation). A set of random variables Y = {Y1, ..., Yn} is said to affiliated if for all

y and ŷ (which are realisations of Y)

fY (y∨ŷ) fY (y∧ŷ) ≥ fY (y) fY (ŷ)

where ∨ denotes the component-wise maximum and ∧ denotes the component-wise minimum. (See

Milgrom and Weber 1982 for more info)

Affiliation means, very loosely, that the higher is my signal, the the more likely it is that yours

is high.

Example:

Let

Y =





1 1

1 2

2 1

2 2





fY =





1
4 + ε
1
4 − ε
1
4 − ε
1
4 + ε





Y is affiliated if ε ≥ 0. You may notice that affiliation is equivalent to imposing a lattice-like

structure on the structure of private information.

• So auctions that we often talk about are:

– IPV: PV with Ui being independant

– Symmetric IPV: Ui ∼ iid

– Affiliated PV (APV)

– Pure Common Values: Ui = Uo

– Mineral Rights: pure common rights with signals iid conditional on Uo

3.0.2 Applications

Think about how these models apply to the following applications:

1. OCS Oil Drilling Rights Auctions
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2. Timber Auctions

3. Treasury Bill Auctions

4. Highway construction contract Auctions

5. Auctions of bus routes

4 Empirical Example: Reduced form work prior to modern struc-

tural approach

Let’s look at Henricks and Porter’s classic paper ‘An Empirical Study of an Auction with Assymetric

Information’ in the AER 1988. It is a mineral rights model.

• Setting: Drainage leases in OCS 1959-69 - leases next to tract in which a deposit has been

discovered.

• Symmetry/assymtery of information is important for qualitative predictions in CV auctions.

In common value auction, want to consider the precision of signals in thinking about as-

symtery. Drainage vs Wildcat: drainage is adjacent to known deposit, wildcat is not

• Research Question: Does the bidding behavior look consistent with a CV model that reflects

institutions? is there evidence of bidding coordination?
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• THE MODEL (FPSB)

• Consider each tract in isolation

• 1 Neighbor (informed) firm [NFirms]

• N-1 non-neighbor firms [NNFrims]

• X - private signal on V , Z - public signal

• Neighbor firm sees X, non-neighbors do not

• Assume z (realization of Z) is fixed. Essentially, the assumption is that the neighbor firm

sees everything that the non-neighbors see. This is a stretch, but models involve simplifying

assumptions...

• Stratgey of NNFirm is Gi(.) which maps z to R+

• Information of NFirm is H = E[V |X, z]

• H is distributed F (.|z) with mean H̄

• Strategy of neighbor firm is σ mapping H to R+, hence: σ(h) ∈ [R,∞] where R is reserve

price

• G(b) = distribution function of max of NN bids, so profit of N firm is G(σ(h))(h− σ(h))

• profit of NN firm is

E[H − b− c|τ(b) > h; z]× F (τ(b)|z)Pr(maxNN)

c is a cost from transaction cost in negotiating pool with a neighbor

τ is a inverse of strategy

• Solve by looking for BNE
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• The paper proceeds by characterizing equilibrium. The characterization is ugly and so I will

skip it (it is also a very specific model, so little technical dividend from going through it).

Instead I will list the comparative statics that come out of the model that are taken to data:

• DATA

• 144 auctions of drainage tracts
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• Data are:

– Date

– Location and size

– Who bid and how much

– Number and date of wells

– Annual production through 1980

– Cost estimates of production

(note ex post data allows for actually realization to be used)
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5 Structural vs Reduced Form vs Model Free

Different questions suggest different approaches. Quantification often requires more modeling

than testing comparative statics. Purely descriptive work probably requires the least. Think

about what the Hendricks Porter can do - e.g. evidence suggestive of cooperative bidding.

And what it can’t do: e.g. quantify inefficiency if any.

5.1 Structural Work on Common Values

This is pretty pessimistic, or at least less developed. Recall what identification is:

Definition 5 (Identification). A model (F,Γ) is identified if for every
(
F, F̃

)
∈ F2 and

(γ, γ̃) ∈ Γ2 , γ (F ) = γ̃
(
F̃
)

implies (F, γ) =
(
F̃ , γ̃

)

So we want to be able to map from observed behavior to primitives. Primitives, in this case,

are a joint distribution of the signals and the underlying value. For identification, we want

this mapping to be unique.

Consider the most standard data in which we see a bunch of data from a set of auctions with

a fixed number of bidders. Let’s make it a FPSB auction, so we see everyone’s bids. Now

consider a simplification of the common value setting in which there is a common value for

everyone Uo like the Hendricks Porter setup.

Now consider what you want to uncover - the joint distribution of signals and the Uo. So

with N bids, you want to understand the behavior of N + 1 random variables. That’s going

to be tough without more structure.

Basically, the extra structure that makes this easy is the Private Values assumption. Which

we explore below. I’ll show you how to relax that a little if we have time, but basically,

the results on structural identification of common value models tend to be negative due to

the above problem. Where progress has been made, it is through imposing extra structure,

focusing on questions that on require identification of a partial model, or through being able

to bring in auxiliary data (e.g. like the Hendricks Porter exploitation of ex post data of

profitability, or changes in bidders or information structure that is plausibly exogneous). For

an Example see Ali Hortascu and Jakub Kastl’s paper on Treasury Auctions in Canada. Here

they test for CV exploiting auxiliary data from a particular information structure.

Anyway, due to the implication of this problem, most structural work has focused on the

private values case, to which we now turn.
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6 Private Values: Equilibrium Theory

Here I will run through what we need for the empirical models we want to explore.

– we divide auctions into the following formats depending on the rules governing who wins

etc:

∗ · FPSB

· SPSB

· Ascending

· Clock (or Dutch)

· Other (various multi-unit or combinatorial variants)

6.0.1 FPSB Auctions

– We use Perfect Bayesian Nash equilibrium in pure strategies

– denote the equilibrium bid as Bi, with realisation bi. Let B = {B1, ..., Bn}

– assume affiliation for this section and also take no stand on private vs common values

– we assume some regularity (see Athey and Haile for details). Notably that values lie on

some compact subset of the real line

– we would like some existence and uniqueness results to proceed: Here is what exists

– Existence:

∗ ∃ an equilibrium with strictly increasing strategies except in some CV auctions with

asymmetric bidders

– Uniqueness:

∗ ∃ a unique equilibrium in strictly increasing strategies in PV auctions as long as we

have independence or symmetry (or both)

– In CV formats we tend to assume what we need. Note that we don’t really need unique-

ness, we just need everyone to be playing the same strictly increasing equilibrium.

Equilibrium a bidder with signal Xi = xi solves

max
b̃

(
E

[
Ui

∣∣∣∣Xi = xi, max
j∈N−i

Bj ≤ b̃
]
− b
)

Pr

(
max
j∈N−i

Bj ≤ b̃ |Xi = xi

)
(1)
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that is, you set your bid to maximise the expected profit if you win (conditional on your

signal) times the probability of winning (again, conditional on your signal)

Let

ṽ (xi,mi;N ) = E

[
Ui

∣∣∣∣Xi = xi, max
j∈N−i

Bj = mi

]

and

v (xi, yi;N ) = E

[
Ui

∣∣∣∣Xi = xi, max
j∈N−i

Bj = βi (yi;N )

]

this expression will turn out to be important as v (xi, xi;N ) is the expected value of winning

when i is pivotal.

Let

GMi|Bi
(mi | bi;N ) = Pr

(
max
j 6=i

Bj ≤ mi | Bi = bi,N
)

this is the CDF of the maximum bid of the opposing bidders given i’s bid and N

Let gMi|Bi
(mi | bi;N ) be the corresponding conditional density

Given this notation we can rewrite (1) as

max
b̃

∫ b̃

−∞

(
ṽ (xi,mi;N )− b̃

)
gMi|Bi

(mi | βi (xi;N ) ;N ) dmi (2)

Some technical stuff is required here to prove that this is differentiable a.e. See Athey and

Haile, and Krishna’s text for technical comments on these points.

We can differentiate (2) w.r.t. b̃ to get

v (xi, xi;N ) = bi +
GMi|Bi

(bi | bi;N )

gMi|Bi
(bi | bi;N )

(3)

– This is the key equation from theory use for estimation purposes. Note the following

∗ It is pretty nice - linear structure is simple (this is from risk neutrality)

∗ LHS is the latent variable we are interested in

∗ RHS has stuff that this observed (bids) or functions related to observed stuff, this

gives hope for estimation.

6.0.2 Ascending Auctions

– Clock or button auctions are the framework used in most theory

– Unattractive for empirical work of very few ascending auctions work like this
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– Even if this framework is OK we have to deal with the fact that we never see the value

at which the highest bidder would drop out.

– However, we would see all but the first order statistic, which is a lot of information

really. That said, you have to be very careful: order statistics loose their independence

if you do not observe all of them and, in an ascending auction, but construction you do

not observe them all (see the Athey Haile survey paper for more). So overcoming the

mechanical loss of independence due to the data generating process is a central issue.

Sometimes you can get around this, more often it is a technical issue that can kill a

paper. Compare to Haile Tamer to follow.

– The key thing from theory, regardless of approach used is that bidders never bid more

than they are willing to pay, and never let anyone win with a price they are willing to

beat.

7 Identification and Estimation of FPSB PV Auctions

– Early work by Harry Paarsch and others in the early 1990s explored ways of estimat-

ing using bid functions and imposing parametric forms on the distribution of private

information.

– Other work by Laffont, Ossard and Vong (in various combinations), and Pat Bajari tried

other approaches using different theoretical ‘handles’

– The literature seems to have converged on the following basic line of attach due to

Guerre, Perrigne and Vong (2000).

Basic idea:

in equilibrium each bidder is acting optimally against the distribution of behaviour of other

bidders

How does this help?

– it means that the distribution of opponents bids in (3) can be inferred from the data

without parametric restriction.

– ie: “given what others are doing you are doing the best you can and given what you

are doing they are doing the best they can” - we are taking both parts of this statement

very seriously
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Lets be formal recall:

ui = bi +
GMi|Bi

(bi | bi;N )

gMi|Bi
(bi | bi;N )

– first; note that this is the inverse of the bid function

– second; note that the bi is observed

– third; note that
GMi|Bi

(bi|bi;N )

gMi|Bi
(bi|bi;N ) is a ratio of properties of the joint distribution of opponents

bids.

The invertability of the bid function is the key thing for identification (i.e. we rely on the

assumption that the bidders use a strictly increasing bid function)

Guerre, Perrigne and Vong (2000), Li, Perrigne and Vong (2002) and Campo, Perrigne and

Vong (2003) work all this out for various scenarios.

Summarizing: in the APV model, if symmetric just need all the bids, if not, then need the

identities of the bidders

7.1 Estimation

How do you operationalize this?

What I want to do is take you through the standard non-parametric approach and then follow

up with some comments.

Map of Approach

Say the data is from T auctions. All auctions are the same, although there is some variation

in the number of bidders. The estimation proceeds in the following steps:

1. (a) Estimate the
GMi|Bi

(bi|bi;N )

gMi|Bi
(bi|bi;N ) from bid data

(b) Use this to compute ui = bi +
GMi|Bi

(bi|bi;N )

gMi|Bi
(bi|bi;N )

(c) Use the psuedo-sample of ui to estimate FU

There is an econometric issue that we need to confront: How do you estimate a density or

CDF from data?
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7.1.1 Aside: Kernel Estimation

– There are several ways to estimate a density from data. Kernels are the most commonly

used method in this application. A good reference on this and other approaches is Pagan

and Ullah (1999)

– A kernel estimator is basically an adaption of the idea of a histogram to the case of data

that has a support that is an interval of the real line (or for higher dimensional kernels,

Rn, where n should be fairly small or else you hit curse of dimensionality problems)

– Discrete data: say you have a random variable x such that the support of x is the set

{1, 2, 3}. To get the density of x you would count the number of times it falls into each

bin and then divide these counts by the number of observations. This is consistent etc.

– Data with a Continuous Support

∗ This is where kernels come in

∗ The idea of a kernel is that we can learn about the value of the density function at

a point v, f (v) , by looking at how common it is to see realizations of the random

variable near this point.

Details

– Imagine we had data on the realizations of a random variable, drawn from a unknown

distribution F (·) and want to know the value of the density f (·) at a point x. The data

is {x1, ..., xn}

– The closest thing to constructing a histogram we might do is to pick an interval around

the point x̃, and count how many observations fall in this interval.

– Our estimator would look like

f̂ (x) =
1

nh

n∑

i=1

I
(
x− h

2
≤ xi ≤ x+

h

2

)

where I (·) is an indicator function and h is a parameter setting the bandwidth. We can

rewrite this as

f̂ (x) =
1

nh

n∑

i=1

I
(
−1

2
≤ xi − x

h
≤ 1

2

)

=
1

nh

n∑

i=1

K (ψ) where ψ =
xi − x
h
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This is our first kernel estimator. The function K (·) is the kernel, which in this case is

a indicator function which equals when when ψ lies in the interval
[−1

2 ,
1
2

]
.

– This kernel is not attractive as it steps, that is, it is not smooth. It has the advantage

that it integrates to one, however. Smoothness is generated by choosing a kernel such

that ∫

R
K (ψ) dψ = 1

Some examples of commonly used kernels are:

1. standard normal: K (ψ) = (2π)−
1
2 exp

[
−1

2 (ψ)2
]

2. epanechnikov: K (ψ) = 3
4

(
1− ψ2

)
if |ψ| < 1, zero otherwise (this minimizes Integrated

Mean Squared Error)

Many others exist.

A few things about small sample properties:

Kernel estimates are typically biased. The bias is a function of the bandwidth, the kernel and

the density to be estimated. Bias can generally be reduced by choosing a smaller bandwidth

at the cost of increasing variance in the estimates. Procedures for generating bias-reducing

kernels exist but require that we allow the kernel to take negative values.

How to select bandwidth:

There are two ways to proceed: by plotting the density implied from the density and seeing

if it looks ”good”. Using the data to select the optimal bandwidth by imposing some criteria

(like integrated square error1 or its expectation). Both are easy to implement, for details see

Pagan and Ullah.

Asymptotic Properties

Under regularity conditions and some assumptions on the DGP kernel estimates are CAN.

See P&U for these assumptions

The key points are that

1. i.i.d draws are useful but not required (you can handle time series type issues)

2. convergence is different from a parametric estimator which means you have to be a bit

careful when using them with parametric estimators in a multi-step procedure.

1ISE is
∫ (

f̂ (x)− f (x)
)2

dx
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3. The asymptotic variance generates a 95% confidence interval that looks like

f ± 1.96 (nh)−
1
2

[
f (x)

∫
K2 (ψ) dψ

] 1
2

4. bootstraps are usually used for small-sample confidence intervals.

7.1.2 Application to the FPSB PV Problem

lets start with the simplest case: FPSB with a symmetric IPV specification

1. (a) FU =
n∏
i=1

FUi This makes step (c) easier

(b) due to independence:

GMi|Bi
(mi | bi;N ) = GMI

(mi | n)

= Pr

(
max
j 6=i

Bj ≤ mi | n
)

(c) this changes the estimated equation to

u = b+
GB (b | n)

(n− 1) gB (b | n)

where notation has been abused a little bit

i. GB (b | n) : marginal distribution of equilibrium bids in n bidder auctions

ii. gB (b | n) : the associated density

(d) This formulation makes estimation straightforward using kernels

ĜB (b | n) =
1

nTn

T∑

t=1

n∑

i=1

χ {bit ≤ b, nt = n}

ĝB (b | n) =
1

nTnhg

T∑

t=1

n∑

i=1

K

(
b− bit
hg

)
χ {nt = n}

so this gives us step (a)

(e) then

û = b+
ĜB (b | n)

(n− 1) ĝB (b | n)

gives us step (b)

(f) then

f̂ (u) =
1

Tnhf

T∑

t=1

1

nt

n∑

i=1

K

(
u− ûit
hf

)
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– the assymptotic distribution of these estimators are “largely unresolved”.

– the easiest way to side-step the issue is use the bootstrap (although always check that

you are ok to use it: depending on the dgp you may need to make some adjustments)

7.1.3 Algorithm for Estimation

1. take each observed bo

2. estimate ĜB (bo | n) and ĝB (bo | n) using the entire data set

3. infer û (bo)

4. once the above is done for each bid, estimate f̂ (u) and draw a picture of it

5. then do whatever policy stuff you want

7.1.4 Other issues

– ∗ for the theory to work we need a compact support of ui. Issues arise when the

estimator is near the boundary of the support - consistency is no longer assured. Li,

Perrigne and Vong (2002, p 180 on) sort this out

∗ while nonparametric estimation is very attractive ex ante it may be that the data

set you are facing works better with the extra structure imposed by a parametric

specification. That is more structure may give you more power. In considering

whether to go parametric think about what you want to use the estimates for,

where identification is coming from and whether any auxiliary data can but used to

justify the parametric assumption.

∗ there is still a lot of structure being imposed on the data here, particularly in stages

(b) and (c). Take some time to think about how much work the functional form

assumptions are doing in these stages.

∗ lastly, and most importantly, note the big assumptions on auction heterogeneity,

bidder heterogeneity etc. More on this later...

7.1.5 Dealing with Bidder Asymmetry

– The asymmetry that we deal with here is differences in the distributions of private

information (as opposed to covariates observed by other bidders, which we deal with

later)
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– with symmetry the markdown term was

GMi|Bi
(bi | bi;n)

gMi|Bi
(bi | bi;n)

without symmetry it is
GMi|Bi

(bi | bi;N )

gMi|Bi
(bi | bi;N )

– the natural apporach, building on what we have done before is to use a kernel estimator

such that

ĜM,B (m, b;Nt) =
1

TNhg

T∑

s=1

K

(
b− bis
hg

)
χ {mit ≤ b,Nt = Ns}

ĝM,B (m, b;Nt) =
1

TNh2
g

T∑

s=1

K

(
b− bis
hg

,
b−mis

hg

)
χ {Nt = Ns}

– this allows each bidder to have their own distribution from which they draw their private

information.

– If you think about this approach for just a second you will realize that it requires a

bucket load of data. You need to see the same set of bidders interacting again and

again...

– Often we can group bidders together into say class A and class B. Now we just need

to make sure that the auctions we use to estimate each density have the same number

of class A and B bidders in them. The rest of the adjustments should, by now, be

straightforward.

– A good example of this approach is the Campo, Perrigne and Vong (2003) paper - lets

have a look at it

30



190 S. CAMPO, I. PERRIGNE AND Q. VUONG

involves two or three firms. A number of arguments for joint bidding have been given in the
literature. For instance, joint bidding can weaken financial constraints, reduce costs by pooling
cartel members’ information and capital through the joint venture and spread risks among firms.
See e.g. DeBrok and Smith (1983), Millsaps and Ott (1985), Gilley et al. (1985) and Hendricks
and Porter (1992). As noted by many economists, however, joint bidding may have introduced
some ex ante asymmetry among bidders.

Because joint bidding is negligible in the 1950s–1960s, our study focuses on auctions held
between December 1972 and 1979.12 Because of data requirements explained subsequently, we
consider auctions with two bidders who can be either joint or solo. This gives a total of 227
auctions from which 55 auctions have two solo bids, 60 auctions have two joint bids and 112
auctions have one solo bid and one joint bid. Among the latter, 63 auctions are won by the joint
bidder. Using a normal approximation, the ratio 63/112 is greater than 1/2 at the 10% significance
level in a one-sided test, where 1/2 would be the expected ratio if the two participants have equal
chance of winning.13 Thus joint bidding has increased the probability of winning suggesting some
ex ante asymmetry among participants.

For each wildcat auction, we know the date, the acreage of the tract, the number of bidders,
their bids in constant 1972 dollars and whether the bid is a solo or a joint bid. Table I gives some
summary statistics in $ per acre for the 454 bids considered in our empirical study as well as on
solo and joint bids separately, whether the opponent’s bid is of the same type or of a different
type.

A first feature revealed by the means displayed in Table I is that joint bids tend to be higher on
average than solo bids, as a number of empirical studies have found. Moreover, joint bidders tend
to bid higher when they face a joint bidder than when they face a solo bidder. Likewise, though
their bids are lower than those of joint bidders, solo bidders tend to bid on average higher when
they face a joint bidder than when they face another solo bidder. This suggests that the bidding
strategy of each type of bidder depends on the type of their opponent. This could arise from bidders
taking into account some possible asymmetry in their bidding strategies. For instance, a test of
the equality of means for solo bids versus joint bids in the 112 auctions with one bidder of each
type gives a t-statistic equal to 1.66, which (weakly) rejects their equality. It is also interesting to
note that the within variability of solo versus solo bids is much smaller than the within variability

Table I. Summary statistics on bids

Variable # Obs Mean STD Minimum Maximum Within STD

All bids 454 687.30 1,431.31 19.51 20,751.32 1,258.91
Joint bids 232 837.32 1,717.54 21.46 20,751.32 —
Solo bids 222 532.53 1,033.20 19.51 11,019.08 —
Joint vs joint 120 875.13 2,056.12 33.94 20,751.32 2,011.99
Joint vs solo 112 796.83 1,266.32 21.46 6,377.94 —
Solo vs joint 112 603.28 1,226.61 19.51 11,019.08 —
Solo vs solo 110 456.45 788.19 20.80 7,009.10 747.43

12 We exclude auctions after 1979 since the rules of the auction mechanism have changed somewhat after this date. We
also exclude the unique sale held in 1970 and the first sale in 1972 because the water depth of the tracts sold at these
sales was much greater than usual.
13 Hereafter, all tests are conducted at the 10% significance level.
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private values than solo bidders with a relatively more important variability for the former. As
pointed out in Section 3.2, these differences can be explained by unobserved tract heterogeneity
and differences between joint and solo bidders. This issue is further investigated below.

As Figure 2 does not provide information on the affiliation between private values within
the same auction whether they are both joint or solo, it is useful to test for their indepen-
dence. We use the non-parametric test proposed by Blum et al. (1961) (BKR hereafter), which
is consistent and distribution free. For two variables X and Y, the test statistic is equal to
�1/2��4B, with B D N�4 ∑N

�D1�N1���N4��� � N2���N3����2, with N the number of observa-
tions and N1���, N2���, N3���, N4��� the numbers of points lying respectively in the regions
f�x, y�jx � X�, y � Y�g, f�x, y�jx > X�, y � Y�g, f�x, y�jx � X�, y > Y�g and f�x, y�jx > X�, y >
Y�g. To impose symmetry among bidders of the same type, we duplicate the observations so that
N D 2 ð L. We find a test statistic equal to 6.57 using observed bids and to 4.69 using trimmed
private values for joint bidders. For solo bidders, we obtained a test statistic equal to 9.52 using
observed bids and equal to 6.92 using trimmed private values. The null hypothesis of independence
is clearly rejected in all cases.

Case �n1, n0� D (1,1�
The potentially asymmetric case is estimated using the 112 auctions with both types. Because
there is only one bidder of each type, (4) and (5) simplify as BŁ

1 and BŁ
0 are void. In particular,

their denominators reduce to the conditional densities gb0jb1 �b1jb1� and gb1jb0 �b0jb0�. Hence, (4)
and (5) reduce to

v1 D �10�b1� D b1 C Gb0jb1 �b1jb1�/gb0jb1 �b1jb1� �18�

v0 D �01�b0� D b0 C Gb1jb0 �b0jb0�/gb1jb0 �b0jb0� �19�
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Figure 2. Marginal densities of private values

$2195.14 per acre with a standard deviation equal to $3024.10 and a range of [$33.94;$13 605.86]. For the (0,2) case,
these numbers are $1027.90, $1170.15 and [$26.89; $5031.39], respectively from the 98 trimmed private values.
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Figure 4. Marginal densities of private values

asymmetry though weak between joint and solo bidders as the empirical cumulative distribution
functions slightly differ with a single crossing.22

Such an asymmetry leads the solo bidders to shade less their private values than joint bidders,
as found in Figure 3, so as to increase their probability of winning the auctions. See also Maskin
and Riley (2000a) and Pesendorfer (2000). However, the shading effect does not counterbalance
fully the asymmetry in terms of valuation distributions, as indicated by the bid averages for joint
versus solo and solo versus joint in Table I and the empirical probability of winning. As is well
known, the aggressiveness of the weak bidder relative to the strong bidder may introduce some
inefficiency in the auction in the sense that the winner of the auction has the lowest valuation. It
turns out that this does not happen in our data set, which can be explained by the relatively weak
asymmetry and the important variability of private values within each auction.

It is interesting to compare these results to the first two cases where bidders are of the same
type. Figure 5 displays the inverse bidding strategies for a joint bidder when facing a joint bidder
(O�11�Ð�) and when facing a solo bidder (O�10�Ð�), the former being to the right of the latter. Given
a same tract valuation, a joint bidder will bid more aggressively when facing a joint bidder than
when facing a solo bidder. For, the joint bidder faces less ‘competition’ when facing a solo bidder
who is more likely to draw a lower private value. Figure 6 displays the inverse bidding strategies
for a solo bidder when facing a solo bidder (O�00�Ð�) and when facing a joint bidder (O�01�Ð�), the
former being to the left of the latter. Thus, a solo bidder will bid slightly more aggressively when
facing a joint bidder than when facing a solo bidder to compensate for his lower private value.
These results confirms the descriptive statistics of Table I. Both figures indicate that bidders have
integrated the type of their opponents in their bidding strategies.

22 The graph is available upon request from the authors. A Kolmogorov–Smirnov test does not reject the equality of the
c.d.f.s on either private values or bids. Note, however, that the Kolmogorov–Smirnov test is based on the independence
of the two samples. This is not the case as joint and solo private values (or bids) are affiliated, which decreases the power
of the test.
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Figure 5. Inverse bidding strategies of joint bidders
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Figure 6. Inverse bidding strategies of solo bidders

Lastly, as indicated in Section 3.2, the comparisons of Of�2,0�
1 �Ð� and Of�1,1�

1 �Ð� as well as
of Of�0,2�

0 �Ð� and Of�1,1�
0 �Ð� provide some information about unobserved tract heterogeneity. A

Kolmogorov–Smirnov test gives a test statistic equal to 0.1917 and 0.0965 for the former and
latter comparisons, respectively. This represents a clear rejection of Of�2,0�

1 �Ð� D Of�1,1�
1 �Ð�. Under the

assumptions of Section 3.2, this means that there is some unobserved tract heterogeneity as tracts
attracting two joint bidders differ significantly from tracts attracting one joint bidder and one solo

Copyright  2003 John Wiley & Sons, Ltd. J. Appl. Econ. 18: 179–207 (2003)



7.1.6 Incomplete data:

– ∗ Often you just observe the transaction data from FPSB auctions and little else.

∗ Some results exist on identification suggesting that a feasible estimator may exist.

Indeed a simple approach may be to exploit the properties of order statistics. Athey

and Haile has a little discussion of this.

∗ To my knowledge no-one has really implemented an estimator with incomplete data

to get at a substantive issue.

8 Ascending Auctions

– Ascending auctions are often modeled as button auctions

– these are pretty poor descriptors of what the data generating process really looks like

since the information transmission in a button auction is too good.

– Haile and Tamer investigate a bounds approach to which is elegant and likely to have

application in other asymmetric information problems where the data generating process

is not perfectly modeled.

– They start with the following two assumptions

1. (a) i. [A1] Bidders do not bid more than they want to pay

ii. [A2] Bidders do not let someone win at a price they are willing to beat

– ∗ note: this allows jump bidding, bids 6= valuations, bidders that merely watch the

action without entering a bid etc

∗ the idea here is to use these restrictions to provide partial identification of valuation.

That is, provide bounds.

Formally:

1. Assume we see the bids made by all the bidders in the data set.

2. [A1] is equivalent to bi ≤ ui ∀i

3. it follows that in an n-bidder auction b(i;n) ≤ u(i;n) [this is easy but not immediate]

4. it follows that

G
(i;n)
B (u) ≥ F (i;n)

U (u) ∀i, u, n (4)
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5. now we need to do a little statistics:

6. the distribution of an order statistic from an iid sample of size n from an arbitrary

distribution F (·) has distribution

F (i:n) (s) =
n!

(n− i)! (i− 1)!

∫ F (s)

0
ti−1 (1− t)n−i dt

7. since the RHS is strictly increasing in F (·) ∈ [0, 1] , F (i:n) (s) uniquely determines a value

for F (s) ∀s

8. this is a useful result since it allows us to define the following function, φ, implicitly. φ

is just the mapping between F (i:n) (s) and F (s)

H =
n!

(n− i)! (i− 1)!

∫ φ

0
ti−1 (1− t)n−i dt H ∈ [0, 1]

so that

FU (u) = φ
(
F i:nU (u) ; i, n

)
(5)

9. since φ : [0, 1]→ [0, 1] is strickly increasing (4) and (5) give

φ
(
Gi:nB (u) ; i, n

)
≥ FU (u)

so, given an estimate of Gi:nB (u) we can get an upper bound on FU (u) . Lets set the

estimation of Gi:nB (u) aside for one moment.

10. We have several versions of Gi:nB (u) , so we have a bunch of upper bounds to choose

from. What we do is choose the least upper bound (the most informative bound)

F+
U (u) = min

i,n
φ
(
Gi:nB (u) ; i, n

)

11. The lower bound is similar, although we have slightly less data to work with...

12. [A2] implies that all losing bidders have valuations less than bn:n + ∆, where ∆ is the

minimum bid increment

13. this implies

un−1:n < bn:n + ∆

14. this gives

Gn:n
∆ (u) ≤ Fn−1:n

U (u) ∀n, u

where Gn:n
∆ (u) is the distribution of Bn:n + ∆

15. now things proceed as above, but for the fact we only have |{n, ..., n}| lower bounds.

Also we should look for the greatest lower bound.
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Comments

– ∗ This seems a pretty flexible approach: do not really need all the bids, just the

transaction price.

∗ Also, note the importance of knowing the number of bidders. Without this it is a

bit hard to exploit the order statistics.

∗ It might be possible to proceed if you had a distribution over the possible number

of bidders.

8.0.7 Estimation

– for this to work we need estimates of Gi:nB (u) and Gn:n
∆ (u)

– as before we use non-parametric estimates which, given these are CDFs, are actually

pretty trivial

– the estimators are

Gi:nB (b) =
1

Tn

T∑

t=1

κ
{
nt = n, bi:nt ≤ b

}

Gn:n
∆ (b) =

1

Tn

T∑

t=1

κ {nt = n, bnt:nt + ∆t ≤ b}

– after these estimates have been taken, we plug it into the formulae above to get the

bounds (there is a little bit of computation to be done here)

– the asymptotic distribution of the final estimates is a little weird due to the min and

max operators but Haile and Tamer show that the bootstrap is able to be applied here.

– there is a problem in that in finite samples the upper and lower bounds may overlap.

H&T discuss this and propose a solution that basically involves taking weighted averages

rather than the min or max.

8.0.8 So What?

– The key issue is whether these bounds allow you to say anything useful about the world.

– The authors show that careful inspection of the basic auction model allows to say things

about reserve prices (bound the optimal reserve price)

– An adaptation of Manski and Tamer allows them to say things about how valuations

are affected by covariates
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– The extent to which you can make useful inference about policy variables will depend

on your application and model

– Lets have a look at the H&T results
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TABLE 2
Gaps Between First- and Second-Highest Bids

Quantiles High Bid Gap
Minimum
Increment

Gap �
Increment

10% 9,151 30 4.1 1.2
25% 22,041 92 10.1 6.9
50% 55,623 309 23.4 14.8
75% 127,475 858 52.1 20.0
90% 292,846 2,048 110.5 76.4

dollars) on the median tract.23 Forest Service officials report that jump
bidding is common. Table 2 provides some support, showing a gap
between the highest and second-highest bid of several hundred dollars
(roughly 10–20 times the minimum increment) in the majority of auc-
tions. Since the cost of jump bidding—the risk that one wins with the
jump bid and pays too much—is highest at the end of the auction, jump
bidding is likely to be more significant early in the auctions. However,
these gaps themselves are generally quite small relative to the total bid,
suggesting that we may be able to obtain tight bounds.

B. Reserve Price Policy

The Forest Service’s mandated objective in setting a reserve price is to
ensure that timber is sold at a “fair market value,” defined as the value
to an “average operator, rather than that of the most or least efficient”
(U.S. Forest Service 1992). Many observers have argued that Forest
Service reserve prices fall short of this criterion and are essentially non-
binding floors (see, e.g., Mead, Schniepp, and Watson 1981, 1984; Haile
1996; Campo et al. 2000). Bidders, for example, claim that the reserve
prices never prevent them from bidding on a tract (Baldwin et al. 1997).
As discussed above, for our purposes it is sufficient to assume only that
the actual reserve prices are below the profit-maximizing reserve prices.

There is an ongoing controversy over so-called below-cost sales—sales
generating revenues insufficient to cover even the costs to the Forest
Service of administering the contract (see, e.g., U.S. General Accounting
Office 1984, 1990, 1991; U.S. Forest Service 1995). Obviously, this is
possible only with reserve prices below profit-maximizing levels. How-
ever, reserve prices are not set with the goal of profit maximization nor

23 Forest Service rules actually require only that total bids rise as the auction proceeds,
although local officials often specified discrete increments. In the time period we consider,
the 5 cent increment was a common practice in this region. Sometimes increments of 1
cent per MBF were used, and many sales used no minimum increment. We use the 5 cent
increment since this results in a more conservative bound, although variations of this
magnitude have very little effect on the results: 5 cents represents about 0.05 percent of
the average bid in our sample.
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TABLE 3
Summary Statistics

Mean
Standard
Deviation Minimum Maximum

Number of bidders 5.7 3.0 2 12
Year 1985.2 2.6 1982 1990
Species concentration .68 .23 .24 1.0
Manufacturing costs 190.3 43.0 56.7 286.5
Selling value 415.4 61.4 202.2 746.8
Harvesting cost 120.2 34.1 51.1 283.1
Six-month inventory* 1,364.4 376.5 286.4 2,084.3
Zone 2 dummy .88 0 1

* In millions of board feet.

are quite tight. The shape of the true distribution suggested by these
bounds resembles a lognormal distribution, which has been used in
several prior studies.

To construct estimates of bounds on the optimal reserve price, an
estimate of the cost of allowing the harvest of the tract, is needed.v ,0

We consider a range of possible values based on Forest Service estimates
(U.S. Forest Service 1995; U.S. General Accounting Office 1999).27 Table
4 shows the results of simulations used to evaluate the trade-offs between
net revenues and the probability that a tract goes unsold with alternative
reserve prices. Values of v0 between $20 and $120 are considered and
the implied bounds on the optimal reserve prices calculated. For each
value of v0, we consider three possible reserve prices: and theˆ ˆp , p ,L U

average of the two. The table reports simulated gains in profit per MBF
relative to actual profits, using each value of v0 as the measure of costs.
This is done both assuming and assumingˆF(7FX) p F (7FX) F(7FX) pL

providing estimated bounds on the profit gains (losses) fromF̂ (7FX),U

using each reserve price considered. Note that lemma 4 enables us to
use equilibrium bids in a second-price sealed-bid auction to obtain rev-
enue predictions.

As foreshadowed by our simulations, despite the tightness of the
bounds on in figure 8, the bounds on the optimal reserve price forF(7)
each v0 are fairly wide. Because the bounds on are tight, however,F(7)
our estimates of the expected revenues obtained with reserve prices

27 For sales in region 6 in 1993, the Forest Service estimated that costs of the timber
sales program were between $85 and $113 per MBF (U.S. General Accounting Office
1999). On the basis of sales in 1990–92, nationwide cost-based reserve prices between $18
and $47 per MBF were suggested as appropriate (U.S. Forest Service 1995), depending
on which timber sales program costs are to be covered by auction revenues. Both calcu-
lations include some costs that are sunk at the time of the auction and, therefore, should
be excluded from v0. However, other costs, such as forgone return on investment and
adverse environmental impacts, are excluded. Obtaining more precise estimates of v0,
ideally as a function of tract characteristics, would be an important step toward a more
definitive analysis of reserve price policies.
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Fig. 10.—U.S. Forest Service timber auctions. Solid curves are estimated bounds, and
dotted curves are bootstrap confidence bands.

between and differ little, with v0 held fixed. The calculated boundsˆ ˆp pL U

on the optimal reserve prices provide strong support for the assumption
that the actual reserve price (around $54) is well below the optimum.
Even with the estimated lower bound on is still slightly larger∗v p 0, p0

than the average actual reserve price. These results also suggest that, at
least on average tracts in our sample, reserve prices could be raised
considerably without causing many tracts to go unsold. Even if F(7) p

a reserve price nearly twice the actual average would be requiredF̂ (7),U

to drive the probability that a tract will go unsold past 15 percent—a
key threshold given a Forest Service policy of ensuring that at least 85
percent of all offered timber volume is actually sold (U.S. Forest Service
1992).

The potential gains in profit from raising reserve prices obviously
depend on v0. With for example, we estimate that gains wouldv p $20,0

be less than 10 percent (and not necessarily positive) even when
28 With however, the potential gains are muchF(7) p F(7). v p $80,L 0

larger. In that case, the Forest Service might achieve net gains of $10
per MBF or more, which would represent more than an 80 percent
increase in profits. With opportunity costs above the average gross rev-
enues of $92.08 per MBF, sales typically lead to a net loss. Hence, for
costs of $100 or $120, substantial gains (reductions in losses) from im-

28 Note that, in general, revenues need not be higher with a given reserve price between
pL and pU given one particular CDF between and However, if or ifF (7) F (7). D p 0L U

Myerson’s regularity condition is assumed, then lemma 4 implies that we can rule out the
optimality of reserve prices that yield a (statistically significant) reduction in expected
revenues when is assumed. This follows from the fact that a rightward shiftF(7) p F (7)L

in raises expected revenues at any reserve price. In our simulations, reductions inF(7)
expected revenues appear for a few reserve prices, but only when is assumed.F(7) p F (7)U
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TABLE 4
Simulated Outcomes with Alternative Reserve Prices

Reserve Price

pL (p � p )/2L U pU

Distribution of Valuations

FL FU FL FU FL FU

Reserve price when v0p$20 62.40 86.02 109.65
Change in profit 6.96 �2.78 6.67 �2.74 1.74 �18.57
Pr(no bids) .00 .02 .07 .12 .19 .41

Reserve price when v0p$40 74.93 92.29 109.65
Change in profit 7.64 �.61 7.61 �1.14 6.30 �10.04
Pr(no bids) .03 .05 .11 .18 .19 .41

Reserve price when v0p$60 85.67 103.39 121.11
Change in profit 9.23 1.92 12.04 3.14 7.21 �6.05
Pr(no bids) .07 .12 .15 .28 .35 .58

Reserve price when v0p$80 98.20 112.34 126.48
Change in profit 13.65 7.63 15.03 6.82 10.44 .96
Pr(no bids) .13 .24 .28 .46 .46 .72

Reserve price when v0p$100 111.09 122.54 134.00
Change in profit 20.09 15.94 21.65 16.87 17.00 14.30
Pr(no bids) .28 .45 .45 .60 .67 .80

Reserve price when v0p$120 144.74 156.01 167.29
Change in profit 32.06 31.31 33.72 31.64 31.56 28.87
Pr(no bids) .84 .86 .84 .89 .88 .97

Note.—Profit and reserve price figures are given in 1983 dollars per MBF. See text for additional details.

posing higher reserve prices would be obtained by selling only tracts
receiving unusually high bids. While revenue maximization is not the
objective of the Forest Service timber sales program, these estimates
suggest the magnitudes of revenues and costs that must be weighed
against other objectives in determining optimal policy.

To evaluate the effects of auction observables on bidder valuations,
we estimate the simple semiparametric model

v p X b � eit t it

assuming Table 5 presents estimated bounds on themed[e d X ] p 0.it it

parameter vector b. Following Manski and Tamer (2002), we construct
confidence intervals using the bootstrap. Since zero lies outside the 95
percent confidence interval for each coefficient, we can reject the hy-
pothesis that any of these conditioning variables has no effect on val-
uations. The implied signs are as expected: larger inventories, higher
harvesting costs, or higher manufacturing costs reduce valuations.
Greater species concentration and higher selling value of end products



9 Extensions to the basic framework

There are many extensions to this basic framework. I want to deal with the two that seem

to me to be crucial to pretty much any empirical investigation you might wish to conduct.

Mainly I discuss the FPSB auction.

These are:

– Auction Heterogeneity (both observed and unobserved)

– Bidder Heterogeneity (both observed and unobserved)

9.1 Observed Auction Heterogeneity - FPSB Auctions

– Basically the news here is good: All the identification results we have used before go

through.

– Here I show how to handle observed heterogeneity in empirical implementation

– Let Z be a vector of auction covariates

∗ Now the variables we have been playing with become:

∗ βi (·;N ,Z) , FU (· |Z) , GMi|Bi
(b | b;N ,Z) , gMi|Bi

(b | b;N ,Z)

∗ and the bidding function we use for estimation changes accordingly

– One approach to the previous estimation is to use standard kernel smoothing over co-

variates

∗ This can also be used in the ascending auction application (see Haile and Tamer)

∗ However as is often the case with kernels this approach is vulnerable to curse of

dimensionality problems

– An alternative suggested by Haile, Hong and Shum (2003) [and applied in Krasnokut-

skaya (2004), Bajari and Tadelis (2004), and Shneyerov (2005)] is as follows:

– We exploit the fact that additive separability is preserved by equilibrium bidding

– Let

ui = Γ (zt) + ait

where ait is the bidders private information. (note multiplicative separability has also been

explored)

43



– Let a normalization exist such that

Γ (z0) = 0

– so now (this is shown in HHS):

βi (ui;N , z) = Γ (z) + βi (ui;N , z0) (6)

= β (Γ (z) + ait;N )

– Now we can write the inverse bid function as

ait + Γ (zt) = βi (Γ (zt) + ait;N ) +
GMi|Bi

(βi (Γ (zt) + ait;N ) | βi (Γ (zt) + ait;N ) ;N )

gMi|Bi
(βi (Γ (zt) + ait;N ) | βi (Γ (zt) + ait;N ) ;N )

(7)

– Now we have to note a few things which are due to the additive separability of the last

few equations

∗ the events {βi (Γ (z) +Ai;N ) = βi (Γ (z) + ai;N )} and {βi (Γ (z0) +Ai;N ) = βi (Γ (z0) + ai;N )}
are equivalent for any z.

∗ the events {βj (Γ (z) +Aj ;N ) = βi (Γ (z) + ai;N )} and {βj (Γ (z0) +Aj ;N ) = βi (Γ (z0) + ai;N )}
are also equivalent for any z and j 6= i.

∗ it follows that the expression

GMi|Bi
(βi (Γ (zt) + ait;N ) | βi (Γ (zt) + ait;N ) ;N )

gMi|Bi
(βi (Γ (zt) + ait;N ) | βi (Γ (zt) + ait;N ) ;N )

is invariant to zt.

– The upshot is that (6) implies (7) holds for all zt whenever it is for zt = z0

– The whole point of this is that auction heterogeneity can now be controlled for by what

amounts to a hedonic regression

∗ Let

bit = α (N ) + Γ (zt) + εit

∗ This is estimated using standard regression techniques.

∗ From this little regression we get a homogenized bid

bhit = bit − Γ̂ (zt)

∗ Then we run through the by now usual approach.

– The only technical point to note is that equilibrium bidding implies that the distribu-

tion of the sampling error, εit, should vary with N . Hence the final stage, where the

distribution of the private information is estimated, should be done separately for each

N
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9.2 Unobserved Auction Heterogeneity

– The problems here are that things which are observed by all the bidders but not by the

econometrician that affects valuations, and these things vary across auctions.

– There are at least three issues here:

1. (a) whether this auction heterogeneity is empirically distinguishable from other assump-

tions about the private information (i.e. is and IPV auction with unobserved het-

erogeneity distinguishable from an APV auction?)

(b) is the distribution of the private information identified (assuming you know the

dgp)?

(c) is the identification adequate? That is, can we use the inference to answer useful

questions if we don’t see the unobserved stuff. This will depend on the project you

have in mind.

– This is an area where more applied econometric work would be useful.

9.2.1 Dealing with it in a FPSB Auction

– currently the state-of-the-art for dealing with this unobserved auction heterogeneity is

Krasnokutskaya (2011) which is an application of Li and Vuong (1998).

– She does something similar to a random effects estimator familiar in panel data, but in a

non-parametric context. When we discuss the Asker 2010 I will show you the mechanics

of this.

– I leave you to go through it if you are interested. However, the key thing to note is that

identification of FU (· |Z) is now possible only up to a locational normalization. So you

can work out the shape of the distribution but not where it sits.

– So in dealing with unobserved heterogeneity we put a constraint on the applicability

of the methods. There have been other recent approaches, some which use a random

effects estimator as a parametric version of the non-parametric deconvolution estimator

(e.g. Bajari Houghton Tadelis forthcoming in the AER). Also there are some recent

new identification results that may be helpful, but I am not aware if they have been

implemented (see work by David McAdams and co-authors).
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9.3 Bidder Heterogeneity

– As far as I can tell people have very little idea of how to handle bidder heterogeneity

that is observed by bidders but not the econometrician. If we always knew what we were

doing, it wouldn’t called research...

9.4 Endogenizing entry

– This is the focus of Krasnokutskaya and Seim (AER, 2011“Bid Preference Programs

and Participation in Highway Procurement Auctions”) and Roberts and Sweeting (AER,

2013 “When Should Sellers Use Auctions”)

– This is first order important when considering the effect of policy changes

– Also has seemed important to me in thinking about collusion (more later)
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