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1 Introduction

This lecture will serve as a brief introduction to the use of moment inequalities in applied work
in IO. Most of this material is based off of Pakes (2010) and Pakes et al. (forthcoming); see also
Tamer (2003), Imbens and Manski (2004), Ciliberto and Tamer (2009), Romano and Shaikh (2010),
Andrews and Jia (2012) (particularly on issues regarding inference).

Moment inequalities have proven useful in many recent IO papers to relax assumptions required
to generate moment equalities; furthermore, in many circumstances the only information we have
are bounds on the parameters of interest.1

2 Basic Setup

Many of the two-period models we have seen so far have followed a similar structure as follows.

Notation. Let π(·) be the profit earned in the second period, di and d−i be the agent’s and its
competitors’ choices, Di be the choice set, Ji be the agent’s information set and E [·|Ji] provide the
agent’s expectation conditional on that information.

Assuming that the observed set of decisions comprise a Nash equilibrium implies that:

C1 : supd∈Di
E [π(d,d−i,yi, θ0)|Ji] ≤ E [π(di = d(Ji),d−i,yi, θ0)|Ji],

where yi is any variable (other than the decision variables) which affects the agent’s profits, and the
expectation is with respect to the joint distribution of (d−i,yi) that summarizes the agent’s beliefs
on the likely realizations of those variables. For notation, let variables that the decision maker
views as random be represented by boldface letters while realizations of those random variables
will be represented by standard typeface.

Three points about C1 are worth noting.

1. There are no restrictions on the choice set; D can be continuous or discrete, multi-dimensional,
etc.

2. C1 is a necessary condition for a Nash equilibrium (and for other weaker notions of equilibrium
as well).

∗The vast majority of this material is borrowed from Ariel Pakes’ notes and Robin Lee’s notes.
1Some recent IO papers that have utilized moment inequalities approaches include: Ho (2009), Holmes (2011),

Crawford and Yurukoglu (2012), Ho, Ho and Mortimer (2012), Lee (2013), Ishii (forthcoming),...
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3. Finally note that C1 is meant to be a rationality assumption in the sense of Savage (1954):
i.e. the agent’s choice is optimal with respect to the agent’s beliefs. Most often we will assume
that these beliefs are correct, but the framework is more general than that.

To check the Nash conditions, we must get an approximation of profits from counterfactuals;
i.e. and approximation to what profits would have been had the agent made a choice which in fact
it did not make. This, in turn, requires a model of how the agent thinks that d−i and yi are likely
to change in response to a change in the agent’s decision. The model for how the agent thinks
(yi,d−i) are likely to respond to changes in di may depend on other variables, say zi, but those
variables need to be exogenous in the sense that the agent thinks they will not change if the agent
changes its decision. Condition 2 formalizes this assumption.

C2 : d−i = d−i(di, zi), and yi = y(zi,di,d−i), and the distribution of zi conditional on (Ji, di =
d(Ji)) does not depend on di.

Notes on C2:

1. If the game is a simultaneous move game then d−i(d′, zi) = d−i and there is no need for an
explicit model of reactions by competitors.

2. In sequential problem, one needs an assumption of how one agent would respond to behavior
of the other agent that is “off the equilibrium path.” One will need to model or take a stance
on this.

3. If the profit function has an endogenous r.h.s. variable (yi), i.e. one which will change if di
changes, we need a model for how it changes.

C1 and C2 together deliver the following restriction

Let ∆π(di, d
′, d−i, zi) ≡ π(di, d−i, yi) − π(d′, d−i(d′, zi), y(zi, d

′, d−i)),, where d′ is any alternative
choice in Di. Then C1 and C2 imply that

E [∆π(di, d
′,d−i, zi)|Ji] ≥ 0, ∀ d′ ∈ Di. (1)

Equation (1) is the moment inequality delivered by the theory. To move from it to an estimation
algorithm we need to specify:

1. the relationship between the expectation operator underlying the agents decisions (our E(·))
and the sample moments that the data generating process provides; and

2. the relationship between our constructed profit function and our observable measures of the
determinants of those profits on the one hand, and the π(·, θ) and (zi, di, d−i) that are utilized
by the agent when making decisions on the other.

These two aspects of the problem differ depending on the application.

3 Relationship to Two-Period Entry/Exit Models.

The first generation two period entry/exit models that we covered used the following two assump-
tions.

First, the relationship between the data generating process and the agents’ expectations is that:
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FC3: ∀d ∈ Di, π(d, d−i, zi, θ0) = E [π(d, d−i, zi, θ0)|Ji].

I.e. it is assumed that all agents know both the decisions of their competitors, and the realization
of the exogenous variables that will determine profits, when they make their own decision. FC3
rules out asymmetric and/or incomplete information, and as a consequence, all mixed strategies
(i.e. this approach implicitly restricts Di to consist only of pure strategies)2.

Second, there is an assumption on the relationship between the variables we measure and the
variables that enter the theoretical model:

FC4. π(·, θ) is known.
zi = (ν2,i, z

o
i ) .

(di, d−i, z
o
i , z

o
−i) are observed.

(ν2,i, ν2,−i)|zoi ,zo−i
∼ F (·; θ), for a known function F (·, θ).

FC4 assumes there are no errors in our profit measure; that is were we to know (di, d−i, zi, z−i) ,
we could construct an exact measure of profits for each θ. However a (possibly vector valued) com-
ponent of the determinants of the profits (of the zi) is not observed by the econometrician (denoted
ν2,i). Since FC3 assumes full information, both ν2,i and ν2,−i are assumed to be known to all agents
when they make their decisions, just not to the econometrician. FC4 also assumes that there is
no error in the observed determinants of profits (in the zoi ) and that the econometrician knows the
distribution of (ν2,i, ν2,−i) conditional on (zoi , z

o
−i) up to a parameter vector to be estimated.

Substituting FC3 and FC4 into equation (1) we obtain

∀d′ ∈ Di, ∆π(di, d
′, d−i, z

o
i , ν2,i; θ0) ≥ 0, (2)

and
(ν2,i, ν2,−i)|zoi ,zo−i

∼ F (·; θ0).

To insure that the model assigns positive probability to the condition that

∀d′ ∈ Di, ∆π(di, d
′, d−i, z

o
i , ν2,i; θ) ≥ 0

for some θ and all i (as is assumed by the model), we need further conditions on F (·) and/or π(·).
The additional restrictions typically imposed are that the profit function is additively separable in
the unobserved determinants of profits, that is that

∀d ∈ Di, π(d, d−i, z
o
i , ν2,i) = πas(d, d−i, z

o
i , θ0) + ν2,i,d, (3)

and that the distribution ν2,i ≡ {ν2,i,d}d∈Di
, conditional on ν2,−i, has full support.

Some points to remember.

• The additive separability in equation (3) cannot be obtained definitionally by assuming ν2

that is a residual from a projection. We could obtain the expectation of the true profit
function onto variables and then get a residual, but that residual would be orthogonal to di
and d−i. However, ν2,i is a determinant of the agent’s decision and hence not orthogonal to
di, and since their is full information, also not orthogonal to d−i.

2As stated it also rules out the analysis of sequential games in which an agent who moves initially believes that
the decisions of an agent who moves thereafter depends on its initial decision. However at the cost of only notational
complexity we could allow for a deterministic relationship between a component of d−i and (d, zi).
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• The early work on entry was looking for a useful reduced form (one that could be used to sum-
marize the effects of environmental characteristics of the market on number of participating
agents). It typically assumed orthogonality of the error and then solved out for the optimal
decision of each agent (whether to enter or not to enter). They tended to find that the implied
profits increased with the number of competitors. This was because more firms entered in
more profitable markets (alternatively the error had components that were common to all
participating agents, and hence were correlated with d−i). So we needed a different way of
obtaining a meaningful summary.3

• Say now we wanted a reduced form for our problem. To get it we could regress πas(·) on
variables of interest (e.g. d−i and other things). Were we to do so, we would pick up an addi-
tional error which is orthogonal to these variables and which is, by construction, orthogonal
to the included variables. Then we would have to deal with both errors in estimation, and
they have different properties. I point this out because the next generation of models we deal
with are often after such a reduced form, but they do not allow for the latter error.

The simple two-period entry model examples we covered in the previous lectures – both with
homogeneous firms, and heterogeneous firms that differed in fixed costs and/or continuation values
– utilized these assumptions. (NB: some papers account for asymmetric information, and thus
weakened FC3 and FC4 above.)

4 Motivating Single Agent Example (Katz 2007)

Estimate the costs shoppers assign to driving to a supermarket: important to analyze zoning
regulations, public transportation projects, etc. This is difficult to analyze using standard discrete
choice models due to the complexity of the choice set facing consumers (all possible bundles of
goods at all possible supermarkets), and assumptions needed to use standard approaches are often
very strong.

Assume that an agent’s utility function is additively separable in:

• utility from basket of goods bought,

• expenditure on that basket, and

• drive time to the supermarket.

Let di ≡ {bi, si} where bi is the basket of goods bought, si is the store chosen; let zi be individual
characteristics. Then:

π(di, zi, θ) = U(bi)− e(bi, si)− θidt(si, zi),

where e(·) provides expenditure, dt(·) provides drive time, and I have used the free normalization
on expenditure (the cost of drive time are in dollars).

3Though when there are interacting agents the standard type of reduced form assumptions used to generate
discrete choice models do not do well, there is always a reduced form for the single agent model that does make sense.
Simply regress profits on variables of interest, assume a conditional distribution of the error, compute the choice as
a function of the error, and form a standard estimator. The only possible problem here is a misspecification of the
distribution of the errors (which can be problematic, a point we will come back to). It is the fact that this does not
work for multiple agent problems that lead to the developments below.
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“Profit Inequality” approach. Compare the utility from the choice the individual made to
that of an alternative feasible choice. Expected difference should be positive. Requires: finding an
alternative choice that allows us to isolate the effects of drive time.

For a particular di chose d′(di) to be the purchase of

• the same basket of goods bi,

• at a store which is further away from the consumer’s home then the store the consumer
shopped at.

Let E(·) be the agent’s expectation operator . Then we assume that

E
[
∆π(di, d

′(di), z)|Ji
]

= −E
[
∆e(di, d

′(di))|Ji
]
− θi E

[
∆dt(di, d

′(di))|Ji
]
≥ 0.

Two notes:

1. Need not specify the utility from different baskets of goods; i.e. it allows us to hold fixed the
dimension of the choice that generated the problem with the size of the choice set, and inves-
tigate the impact of the dimension of interest (travel time) in isolation. Which inequalities we
chose is the “sample” design question in this context. Notice also that we need not specify an
outside alternative to estimate this model, whereas we typically do in discrete choice models.

2. I have not assumed that the agent’s perceptions of prices are “correct” in any sense (see
the discussion of the last lecture). I come back to what I need of the agent’s subjective
expectations.

Case 1: θi = θ0. More generally all determinants of drive time are captured by variables the
econometrician observes and includes in the specification. Assume that

N−1
∑
i

E
[
∆e(bi, si, s

′
i)
]
−N−1

∑
∆e(bi, si, s

′
i)→P 0,

N−1
∑
i

E
[
∆dt(bi, si, s

′
i)
]
−N−1

∑
i

∆dt(bi, si, s
′
i)→P 0

which would be true if, for e.g., agents were correct on average (this is stronger than we need).
Then (assuming that s′i is further away than si,

−E
[
∆e(di, d

′(di))
]
− θ E

[
∆dt(di, d

′(di))
]
≥ 0

implies that

−
∑

i ∆e(bi, si, s
′
i)∑

i ∆dt(bi, si, s′i)
→p θ ≤ θ0.

(i.e., observing consumers going to closer stores provides a lower bound on travel costs).

If we would have also taken an alternative store s′′ which was closer to the individual then we
can form the following inequality:

−
∑

i ∆e(bi, si, s
′′
i )∑

i ∆dt(bi, si, s′′i )
→p θ ≥ θ0.

and we would have consistent estimates of bounds on θ0.
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Case 2: θi = (θ0 + ν2,i),
∑

ν2,i = 0. This case allows for a component of the cost of drive
times (ν2,i) that is known to the agent (since the agent conditions on it when it makes its decision)
but not to the econometrician. Then provided dt(si) and dt(s′i)) are known to the agent, then

E

[
− ∆e(bi, si, s

′
i)

∆dt(bi, si, s′i)
− (θ0 + ν2,i)

]
≤ 0,

and provided agents expectation on expenditures are not “systematically” biased, we can get a
similar inequality:

− 1

N

∑
i

(
∆e(bi, si, s

′
i)

∆dt(bi, si, s′i)

)
→P θ ≤ θ0.

(average of ratio as opposed to ratio of averages to control for heterogeneity at the individual level).

Notes.

• We did not need to specify (or compute) the utility from all different choices, so there could
have been (unobserved or observed) sources of heterogeneity in the U(bi). Our choice of
alternative simply differences them out.

• Case 2 allows for unobserved heterogeneity in the coefficient of interest and does not need to
specify what the distribution of that unobservable is. In particular it can be freely correlated
with the right hand side variable. “Drive time” is a choice variable, so we might expect it to
be correlated with the perceived costs of that time (with νi).

• If the unobserved determinant of drive time costs (νi) is correlated with drive time (dt)
then Case 1 and Case 2 estimators should be different, if not they should be the same. So
there is a test for whether any unobserved differences in preferences are correlated with the
“independent” variable.

Empirical Results

Data. Nielsen Homescan Panel, 2004 & data on store characteristics from Trade Dimensions.
Chooses families from Massachusetts.

Discrete Choice Comparison Model. The multinomial model divides observations into ex-
penditure classes, and then uses a typical expenditure bundle for that class to form the expenditure
level (the “price index” for each outlet). Other x’s are drive time, store characteristics, and indi-
vidual characteristics. Note that

• the prices for the expenditure class need not reflect the prices of the goods the individual
actually is interested in (so there is an error in price, and it is likely negatively correlated
with price itself.)

• it assumes that the agents new the goods available in the store and their prices exactly when
they decided which store to chose (i.e. it does not allow for expectational error)

• it does not allow for unobserved heterogeneity in the effects of drive time. We could allow
for a random coefficient on drive time, but, then we would need a conditional distribution for
the drive time coefficient....
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Focus. Allows drive time coefficient to vary with household characteristics. Focus is on the
average of the drive time coefficient for the median characteristics (about forty coefficients; chain
dummies, outlet size, employees, amenities...).

Multinomial Model : median cost of drive time was $240 (when the median wage in this region is
$17). Also several coefficients have the “wrong” sign or order (nearness to a subway stop, several
amenities, and chain dummies).

Inequality estimators. Uses a lot of moments: point estimates, but tests indicated that the model
was accepted. Standard errors are very conservative.

• Inequality estimates with

θi = θ0 : .204 [.126, .255]. ⇒ $4/hour,

• Inequality estimates with

θi = θ0 + νi : .544 [.257, .666], ⇒ $14/hour

and other coefficients straighten out.
Apparently the unobserved component of the coefficient of drive time is negatively correlated

with observed drive time differences.

5 The Revealed Preference Approach, More Generally.

We want to extend these ideas to a general choice set and allow for interacting agents. Recall that
we have leverage C1 (individual rationality) and C2 (exogeneity of z’) to obtain the following:

E [∆π(di, d
′,d−i, zi)|Ji] ≥ 0, ∀ d′ ∈ Di.

To take this as an empirical framework, we need to formalize:

• The relationship of the expectation operator the agent uses, and the data generating process;

• The relationship between the profit function the agent perceives and the variables that deter-
mine its value, and the profit function that we (the econometricians) specify and the variables
which determine its value.

We discuss each in turn.

5.1 The agent’s expectation operator and the DGP.

We begin with the assumption on the relationship between the expectation operator underlying
agents’ decisions (our E(·)), and the expectation conditional on the process actually generating the
data (our E(·)). This will help clarify the sense in which the model can be misspecified without
invalidating the properties of the estimator. Throughout we shall assume that we know a subset of
the variables that are in the agent’s information set when it makes its decision.

We will assume that there is a known subset of the observed variables, denoted xi, which are
contained in Ji and satisfy the condition that if h(·) is a positive valued function, then

PC3 :
1

N

∑
i

E
(

∆π(di, d
′, d−i, zi)|xi

)
≥ 0 ⇒ E

1

N

∑
i

(
∆π(di, d

′, d−i, zi)h(xi)
)
≥ 0 .
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• Correct Expectations are Sufficient:

– Standard Bayes-Nash condition. Each agent knows: (i) the other agents’ strategies [
d−i(J−i)], and (ii) the joint distribution of other agents’ information sets and the prim-
itives sources of uncertainty [ of (J−i, zi))] conditional on Ji, and regularity conditions.

– Weaker condition: agents’ conditional expectations of profit difference are correct. Does
not require knowledge of other agent’s strategies, or the distribution of (d−i, zi) condi-
tional on Ji. E.g. auctions requires only knowledge of the distribution of second order
statistic – which could be learned from experience if the same situation was repeated
many times.

• Incorrect expectations are also possible; all we need is that the average of

E [∆π(di, d
′, d−i, zi)|xi]− E[∆π(di, d

′, d−i, zi)|xi],

is non-negative. Relevant cases:

– Agents beliefs are not exactly right but the difference between agents’ expectations on
∆πi(·, θ0) and the expectation of the data generating process are mean zero conditional
on x, or

– Agents can be consistently “overly optimistic” about the relative profits from the deci-
sions they make.

5.2 The Agent’s and Econometrician’s Measure of Profits

We introduce a general model of how profits are measured before providing the restrictions we will
leverage. This formality makes explicit the sources of the disturbances in our models and their
relationship to different estimation strategies.

Denote by r(d, d−i, z
o
i , θ0) our observable approximation to π(·). Then we can always define

ν(d, d−i, z
o
i , zi, θ0) ≡ r(d, d−i, zoi , θ0)− π(d, d−i, zi),

so that
r(·) = π(·) + ν, and E [r(·)|·] = E [π(·)|·] + E [ν|·].

Then
r(d, d−i, z

o
i , θ0) ≡ E [π(d,d−i, zi)|Ji] + ν2,i,d + ν1,i,d,

where
ν2,i,d ≡ E [ν(d,d−i, z

o
i , zi, θ0)|Ji],

ν1,i,d ≡
(
π(d, ·)− E [π(d, ·)|Ji]

)
+
(
ν(d, ·)− E [ν(d, ·)|Ji]

)
≡ νπ1,i,d + νr1,i,d.

Sources of ν1. The first source of differences between our approximation to profits and an agents
expectations of profits will be comprised of: expectational error from incomplete (uncertainty in
zi), and/or asymmetric (uncertainty in d−i) information,

νπ1 = π(d, ·)− E [π(d, ·)|Ji]
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and specification and measurement error or

νr1 = ν(d, ·)− E [ν(d, ·)|Ji]

(this includes the error from projecting profits onto variables on interest in reduced form models).
Note that:

• Although E [ν1,i,d|Ji] = 0, by construction, it will often be the case that E [ν2,i,d|Ji] 6= 0. This
distinction is why we need to keep track of two separate disturbances.

• To compute the distribution of the expectational error we would have to specify what each
agent knows about its competitors, and then repeatedly solve for an equilibrium (a process
which typically would require us to select among equilibria).

ν2 and Selection. ν2 is that part of profits that the agent conditions on when making its decision
but is not included in the econometrician’sprofit specification. Since ν2,i ∈ Ji and di = d(Ji), di will
generally be a function of ν2,i (and perhaps also of ν2,−i). This can generate a selection problem.

To see why, temporarily assume that the agent’s expectations (our E(·)) equals the expectations
generated by the true data generating process (our E(·)), that x is an “instrument” in the sense
that E [ν2|x] = 0, and that x ∈ J . Then

E [ν1|x] = E [ν2|x] = 0.

These expectations do not condition on di, and any moment which depends on di requires
properties of the disturbance conditional on di. Since d is measurable σ(J )

E [ν1|x, d] = 0.

However since ν2 ∈ J and
E [π(·)|·] = E [r(·)|·] + ν2,

if the agent chooses d∗ then

ν2,d∗ − ν2,d ≥ E [r(·, d)|·]− E [r(·, d∗)|·]

so
E [ν2,d∗ |x, d∗] 6= 0, and E [ν2,d|x, d] 6= 0.

The fact that “x is an instrument” does not “solve” the selection problem. In particular, in our
inequality context an estimation algorithm based on accepting any value for θ which makes the
sample average of our observable proxy for the difference in profits (of ∆r(·, θ)), or its covariance
with a positive valued instrument, positive should not, at least in general, be expected to lead to
an estimated set which includes θ0 (even asymptotically).

5.3 Overcoming the Selection Problem.

The econometrician only has access to ∆r(·, θ) and our best response condition is in terms of the
conditional expectation of ∆π(·). So we need an assumption which enables us to restrict weighted
averages of ∆r(·) in a way that insures that the expectation of the weighted average of ∆r(·, θ) is
positive at θ = θ0.Here are two ways around it that are frequently used.
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PC4a: Differencing. Here there are groups of observations with the same value for the ν2 error.
We end up getting difference in difference inequalities (the difference for one observation contains
the same ν2 error as the difference for the other).

Let there be G groups of observations indexed by g, counterfactuals d′i,g ∈ Di,g, and positive
weights wi,g ∈ Ji,g, such that

∑
i∈g wi,g∆ν2,i,g,di,g ,d′i,g

= 0; i.e. a within-group weighted average of

profit differences eliminates the ν2 errors. Then

G−1
∑
g

∑
i∈g

wi,g

(
∆r(di,g, d

′
i,g, ·; θ0)− E [∆π(di,g, d

′
i,g, ·; θ0)|Ji,g]

)
→P 0,

provided G−1
∑

g

∑
iwi,g∆r(di,g, d

′
i,g, ·; θ0) obeys a law of large numbers.

Our supermarket example is a special case of PC4a with ng = wi,g = 1. There di = (bi, si),
π(·) = U(bi, zi) − e(bi, si) − θ0dt(si, zi) and ν2,i,d ≡ U(bi, zi). If we measure expenditures up to a
ν1,i,d error, r(·) = −e(bi, si)− θ0dt(si, zi) + ν2,i,d + ν1,i,d. We chose a counterfactual with b′i = bi, so
∆r(·) = ∆π(·)+∆ν1,·, and the utility from the bundle of good bought is differenced out. “Matching
estimators”, i.e. estimators based on differences in outcomes of matched observations, implicitly
assume PC4a (no differences in unobservable determinants of the choices made by matched obser-
vations).

PC4b: Unconditional Averages and Instrumental Variables. PC4b assumes there is a
counterfactual which gives us an inequality that is additive in ν2 no matter the decision the agent
made. The counterfactual may be different for different observations. Then we can form averages
which do not condition on d, and hence do not have a selection problems.

Assume that ∀d ∈ Di, there is a d′ ∈ Di and a wi ∈ Ji such that

wi∆r(di, d
′
i, ·; θ) = wiE [∆π(di, d

′
i, ·; θ)|Ji] + ν2,i + ∆ν1,i,·,

Then if xi ∈ Ji, E[ν2,i|xi] = 0, and h(·) > 0

N−1
∑
i

wi∆r(di, d
′
i, ·; θ0)h(xi) →P N

−1
∑
i

wiE [∆π(di, d
′
i, ·; θ0)|Ji]h(xi) ≥ 0,

provided N−1
∑
ν1,i,·h(xi) and N−1

∑
ν2,ih(xi) obey laws of large numbers.

Case 2 of our supermarket example had two ν2 components; a decision specific utility from
the goods bought, ν2,i,d = U(bi, zi) (like in case 1), and an agent specific aversion to drive time,
θi = θ0 + ν2,i. As in case 1, taking d′ = (bi, s

′
i) differenced out the U(bi, zi). Then ∆r(·) =

−∆e(·, si, s′i) − (θ0 + ν2,i)∆dt(si, s
′
i, zi) + ∆ν1,·. Divide by ∆dt(si, s

′
i, zi) ≤ 0. Then C1 and C2

imply that E [∆e(si, s
′
i, bi)/∆dt(si, s

′
i, zi)|Ji] − (θ0 + ν2,i) ≤ 0. This inequality is; (i) linear in ν2,i,

and (ii) is available for every agent. So if E[ν2] = 0, PC3 and a law of large numbers insures
N−1

∑
i ν2,i →P 0, and

∑
i ∆e(si, s

′
i, bi)/∆dt(si, s

′
i, zi)→P θ0 ≤ θ0; while if E[ν2|x] = 0 we can use

x to form instruments. Notice that ν2,i can be correlated with dt(zi, si) so this procedure enables
us to analyze discrete choice models when a random coefficient affecting tastes for a characteristic
is correlated with the characteristics chosen.

5.4 Left For the Reader: Formalities on What is Needed and Some Examples.

By appropriate choice of weighting functions we can do quite a bit. We consider functions of the
form

hi(d′; di,Ji,x−i) : Di → R+
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So h(·) has to be non-negative and its value can depend on;
(i) the alternative choice considered (on d′),
(ii) on variables in the information set Ji (which determines di),
(iii) and (possibly) on some observable component of the other agents’ information sets, x−i ⊂
×j 6=iJj .

Notice that by allowing weights to depend on x−i we no longer can insure that the weights are
mean independent of ν1 as we only insured that E∆r(·) was independent of Ji and x−i /∈ Ji.

Definitions For i = 1, ..., n and (d, d′) ∈ D2
i , define:

ν2,i,d,d′ = E [∆π(d, d′,d−i, zi)|Ji]− E [∆r(d, d′,d−i, z
o
i )|Ji]

ν1,i,d,d′ = νπ1,i,d,d′ − νr1,i,d,d′
νπ1,i,d,d′ = ∆π(d, d′,d−i, zi)− E [∆π(d, d′,d−i, zi)|Ji]
νr1,i,d,d′ = ∆r(d, d′,d−i, z

o
i )− E [∆π(d, d′,d−i, z

o
i )|Ji]

From these definitions, it follows that:

∆π(d, d′,d−i, zi) = ∆r(d, d′,d−i, z
o
i , θ0) + ν1,i,d,d′ + ν2,i,d,d′

and, re-arranging terms and taking expectations (note E[νπ1,i,d,d′ |Ji] = 0) yields:

∆r(d, d′,d−i, z
o
i , θ0) = E[∆π(d, d′,d−i, zi) + νr1,i,d,d′ − ν2,i,d,d′

What is needed? Given these weighting function our assumption is designed to insure that

E
[ n∑
i=1

∑
d′∈Di

hi(d′; di,Ji,x−i)∆r(d′,di,d−i, zoi , θ0)
]

Since

∆r(d, d′,d−i, z
o
i , θ0) = E[∆π(d, d′,d−i, zi)|Ji] + νr1,i,d,d′ − ν2,i,d,d′

the inequality we want to take to data is

E

 n∑
i=1

∑
d′∈Di

hi(d′; di,Ji,x−i)∆r(di, d′,d−i, zoi , θ0)


= E

 n∑
i=1

∑
d′∈Di

hi(d′; di,Ji,x−i)E[∆π(di, d
′,d−i, zi)|Ji]

 (4)

+ E

 n∑
i=1

∑
d′∈Di

hi(d′; di,Ji,x−i)νr1,i,di,d′

 − E
 n∑
i=1

∑
d′∈Di

hi(d′; di,Ji,x−i)ν2,i,di,d′


Since E[∆π(di, d

′,d−i, zi)|Ji] ≥ 0 each term in the first summand is nonnegative by the assumed
nonnegativity of the weights hi(d′; di,Ji,x−i). However we also require the last two summations
to be non-negative.

11



As noted the definition of νr1 in equation yields E[νr1,i,di,d′
|Ji] = 0. So, when the weight function

does not depend on x−i, the summation over νr1 terms in equation (4) is zero. However when hi(·)
depends non-trivially on the actions or information sets of other agents, then νr1 can be correlated
with hi(·) and this will violate the condition we now turn to.

If we can insure that the last term is negative, then C2 holding will imply that this inequality
holds

Condition PC4 Let hi(d′; di,Ji,x−i) be a nonnegative function whose value can depend on
the alternative choice considered (on d′), on the information set Ji (which determines di), and
(possibly) on some observable component of the other agents’ information sets, x−i ⊂ ×j 6=iJj .
Assume that

E[
n∑
i=1

∑
d′∈Di

hi(d′; di,Ji,x−i)∆ν2,i,di,d′ ] ≤ 0

and

E[

n∑
i=1

∑
d′∈Di

hi(d′; di,Ji,x−i)∆νr1,i,di,d′ ≥ 0. ♠

To see what underlies PC4 assume temporarily that for each di, h
i(d′; di,Ji) ≡ 1 for a particular

d′(di) and 0 elsewhere. Then it suffices that an average over agents of∑
j∈Di

E[
(
ν2,j − ν2,d′(j)

)
| di = j, xi] Pr{di = j|xi}

is not positive. This is an unconditional average, it sums over each possible choice for each individual
(the choice actually made enters in the same way as any other possibility). For each choice the
researcher is free to chose any alternative provided the average of the differences between the ν2

associated with the choice and its alternatives is not positive.
The function h(·) allows the researcher to weight the different differences differently. Consider

the supermarket example in which the cost of drive time differed across shoppers. We first chose an
alternative which was buying the same bundle at different stores thus differencing out the impact
of heterogeneity in preferences over bundles (i.e. we set all other h(·) = 0), then we weighted the
resultant utility differences across individuals by the inverse of the difference in drive time thus
isolating the drive time coefficients (so for that d′(j), h(j, d′(j), x) = 1/∆dt(j, d′(j))). We only then
averaged over individuals to obtain the average cost of drive time.

5.4.1 Assumptions which imply PC4.

The flexibility in this approach comes from the ability to chose the function d′(di); as this can be
chosen to be any decision in the agent’s choice set. We try to chose it to enable us to account for
unobservables that agent’s knew prior to the choice but are not contained in our data sets. Here is
an outline of ways that have been found to do so.

Cases when we can form inequalities which do not depend on the models’ ν2,i,d by
appropriate choice of h(j, d(j), ·).

• ∀d, ν2,i,d = ν2,i, that is when the unobservable known to the agent when it makes its choice
but not observed by the econometrician is constant across choices, or
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• ν2,i,d can vary across decisions, but the same value of ν2,i,d appears in more than one of them
(so there are “group effects”).

This often allows us to use perturbation conditions, similar to those used by Euler for continuous
choice problems, to analyze problem with discreteness in choice sets, or at boundaries of the choice
set. For one example see Morales, 2011.

• models for micro data where a variable needed for an inequality is unobserved (or is measured
with error) at the micro level but is observed (or the error is averaged out) at a higher level
of aggregation (say because of the availability of Census data).

Cases where we can form inequalities that do not condition on ν2,i,d being in a particular
set.

• Ordered choice models (defined broadly enough to include the vertically differentiated demand
model used in I.O.) satisfy PC4.

• contracting models in which there is a component of the contract that the agents know but
the econometrician does not observe (as in Ho 2009, which we will cover later.)

These are cases which appears often in IO models because the unobservable is often a determinant
of cost that is unknown to the econometrician but known to the agents. Here are two familiar cases
in point.

• The firm is buying a discrete number of units, so di ∈ Z+. We can always take as d′(j) = j+1
and the difference in profits will contain the cost savings from not purchasing the additional
unit (in this case are instrument has to be orthogonal to the unobserved determinant of cost).

• Contracts between buyers and sellers which have an unobserved component, which is, say, a
cost to the buyer. Then the cost is a profit to the seller if the contract is established, and is
a savings to the buyer if the contract is not accepted.

Functionals Form Assumption. None of the cases above required assumptions on the func-
tional form of the disturbances. Sometimes when we can not get rid of the selection problem
without some assumption, an assumption on the form of the distribution of ν2 will be enough.
Below we note a case where all we need is symmetry of the ν2 errors will enable one to maintain
the inequality by using the tail of one side to correct for selection on the other (this in the spirit
of Powell’s (1986) symmetry assumption). Several cases with full functional form assumptions are
now being developed.

This is a new literature, and there are different ways of dealing with the selection problem
currently being developed. Most of them is add restrictions to the distribution of disturbances; but
still do not require a particular distribution for them.

6 Discrete Investment Choices by A Firm.

This application is due to Ishii 2008. It is about analyzing choices of a number of ATM’s but as
will become obvious similar analysis could be used for at least some types of entry games.

Ishii analyzes how ATM networks affect market outcomes in the banking industry. The part of
her study we consider here is the choice of the number of ATMs. More generally these papers provide
techniques that can be used to empirically analyze “lumpy” investment decisions, or investment
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decisions subject to adjustment costs which are not convex for some other reason4, in market
environments. Ishii uses a two period model with simultaneous moves in each period.

• First period; each bank chooses a number of ATMs to maximize its expected profits given its
perceptions on the number of ATMs likely to be chosen by its competitors.

• Second period interest rates are set conditional on the ATM networks in existence and con-
sumers chose banks.

Note that there are likely to be many possible Nash equilibria to this game.

How do we get to second stage profit function? Initial stages.

• estimate a demand system for banking services and an interest rate setting equation; both
conditional on the number of ATMs of the bank and its competitors, i.e. on (di, d−i).

Discrete choice model among a finite set of banks with consumer and bank specific unobservables
(as in BLP). The indirect utility of the consumer depends on the distance between the consumer’s
home and the nearest bank branches, the consumer’s income, interest rates on deposits, bank level
of service proxies, the size of the ATM network, and the distribution of ATM surcharges (surcharges
are fees that consumers pay to an ATM owner when that owner is not the consumer’s bank).

• Interest rates are set in a simultaneous move Nash game. Note: the model is structural so
we can also compute what interest rates would be and where consumers would go were their
a different network of ATMs.

Note. Need to assume that the solution to the second stage is unique; or at least that you are
calculating the one all participants agree would occur. Come back to the realism of this below.

Compute the banks’ earnings conditional on the ATM networks in existence, say r(yi, di, d−i).
These are calculated as the earnings from the credit instruments funded by the deposits minus
the costs of the deposits (including interest costs) plus the fees associated with ATM transactions.
The ATM fee revenue is generated when non-customers use a bank’s ATMs and revenue is both
generated and paid out when customers use a rival’s ATMs.

The ATM Choice Model. To complete the analysis of ATM networks Ishii requires estimates
of the cost of setting up and running ATMs. Crucial to the analysis of the implications of existing
network (is there over or under investment, are ATM networks allowing for excessive concentration
and excessively low interest on customer accounts,...) and of what the network is likely to result
from alternative institutional rules (of particular interest is the analysis of systems that do not
allow surcharges, as suggestions to eliminate surcharges have been part of the public debate for
some time).

We infer what cost must have been for the network actually chosen to be optimal. So we model
choice network size; of di ∈ D ⊂ Z+, the non-negative integers. We assume a simultaneous move
gain. The agent forms a perception on the distribution of actions of its competitors and of likely
values of the variables that determine profits in the next period, and chooses the di that maximizes
expected profits. So this is a multiple agent ordered choice model. Formally

E [π(yi, di, d−i, θ)|Ji] = E [r(yi, di, d−i)|Ji]− (θ + ν2,i)di, (5)

where
4Actually Ishii’s problem has two sources of non-convexities. One stems from the discrete nature of the number

of ATM choice, the other from the fact that network effects can generate increasing returns to increasing numbers of
ATMs

14



• Ji is the information known by the agents when the decisions on the number of ATM’s must
be made,

• θ is average cost of an ATM, and the νi capture the effects of cost differences among banks
that are unobserved to the econometrician but known to the agent. What we know is there
are a set of instruments such that E[ν2,i|xi] = 0

Clearly a necessary condition for an optimal choice of di is that:

• expected profits from the observed di is greater than the expected profits from di − 1

• expected profits from the observed di is greater than the expected profits from di + 1.

Since we can calculate what the bank would earn in income in both those situations, these two
differences provide inequalities that the costs of ATMs must satisfy, and when we average them
over banks, they provide an inequality estimator of θ.5

The inequality for the first case is6

0 ≤ E [π(yi, di, d−i, θ)|Ji]− E [π(yi, di − 1, d−i, θ)|Ji] =

E [r(yi, di, d−i)|Ji]− E [r(yi, di − 1, d−i)|Ji]− (θ + ν2,i)

This will give us an upper bound for θ. I will let you work out the second case. It gives us our
lower bound.

A few points are worthy of note.

• Note we have chosen d′(di) in a way that insures we keep a ν2,i for every agent (there is no
selection).

• To do this we need to solve out for the returns that would be earned were there a different
ATM network (for r(yi, di − 1, d−i), etc.) ⇒ we have to solve out for the interest rates that
would prevail were the alternative networks chosen. This is why you need the structural static
model; i.e. we need approximations to counterfactuals.

• The expectation is conditional on information known when the decisions are made. It is over
any component of yi not known at the time decisions are made, and over the actions of the
competitors (over d−i). Note that we do not need to specify what that information set is.

Our behavioral assumptions imply.

E

(
r(yi, di, d−i)− r(yi, di − 1, d−i)− (θ0 + ν2,i)

)
≥ 0

5These conditions will also be sufficient if the expectation of π(·) is (the discrete analogue of) concave in di for all
values of d−i, a condition which works out to be almost always satisfied at the estimated value of θ.

6More formally to get this we use PC4 substituting

h
(
j, d′(j), ·

)
= 1 ifj = di; h

(
j, d′(j), ·

)
= −1 ifj = di − 1,

and h
(
j, d′(j), ·

)
= 0 elsewhere.
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and

E

(
r(yi, di, d−i)− r(yi, di + 1, d−i) + (θ0 + ν2,i)

)
≤ 0,

with
∑
ν2,i = 0 by construction. If we had an instrument (an x which is the in the agents’

information set when it made its decision) that was orthogonal to ν2,i and h(·) was a positive value
function, our behavioral assumptions would also imply∑

i

E

(
r(yi, di, d−i)− r(yi, di − 1, d−i)− (θ0 + ν2,i)

)
h(xi) ≥ 0

Simplest Estimator. Let ∆rL be the sample average of the returns made from the last ATM
installed, and ∆rR be the sample average of the returns that would have been made if one more
ATM had been installed. Then

∆rL − θ ≥ 0 (i.e. ∆rL ≥ θ),

and
−∆rR + θ ≥ 0 (i.e. θ ≥ rR).

Assuming ∆rR ≤ ∆rL
Θ̂J = {θ : −∆rR ≤ θ ≤ ∆rL}.

Notes. With more instruments the lower bound for θ0 is the maximum of a finite number of
moments, each of which distribute (approximately) normally. So actual lower bound has a positive
bias in finite samples. The estimate of the upper bound is a minimum, so the estimate will have a
negative bias. ⇒ Θ̂J may well be a point even if Θ0 is an interval. Importance of test.

Results (see table).

• h(x) = constant ⇒ interval, h(x) = all ⇒ a point.

(Instruments: transformation of market population, the number of banks in a market, and
the number of branches of a bank in a market (indicator if each value is above or below mean).
These variables are all in the information sets of the agents at the time they make their ATM
network choices).

• Test: di /∈ IV accepts, di ∈ IV rejects.

• CI pretty tight, and pretty stable across specifications (≈ $4, 500 per ATM per month). Quite
a bit larger than prior estimates which do not take into account all aspects of costs.

Implications. Ishii (forthcoming). Large banks subsidize their ATM networks in order to gain
customers (whom they pay lower interest rates to). The question of whether to force equal access
to all ATMs and a central surcharge was considered in congress. She considers a counterfactual
with the same number of ATMs, imposes a universal ATM user fee that would just cover ATM
costs, and recalculates equilibrium. A centralized surcharge would reallocate profits from large to
small banks and decrease concentration markedly. Welfare effects (conditional on the network) not
as obvious because of costs of ATMs. She also show that investment in ATMs is suboptimal; so
one might want to make the ATMs endogenous and see what happens, but then we get faced with,
among other things, the issue of multiplicity of equilibria.
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Note. We have ignored the fact that often one side of an ordered choice model is truncated. In
Ishii’s model some banks actually had zero ATM’s and for these banks there is no feasible change
to the left. If we simply ignore those banks we induce a selection problem; they may well have
been banks with particularly negative cost shocks. We can treat this in at least two ways; i) find
a variable which you know is greater than the value of their ATM costs, and use it to bind, or ii)
assume the cost distribution is symmetric and use the symmetry to bound one side (See PPHI).

Table 1: Inequality Method, ATM Costs∗

θJ 95% CI for θ
LB UB

h(x) ≡ 1 [32,006, 32,492] 23,301 41,197
h(x) = full∗ 32,492 29,431 38,444

Different Choices of D(di) (h(x) = full)

3.{d : |d− di| = 2} 36,188 31,560 38,947
4.{d : |d− di| = 1, 2} 36,188 31,983 36,869

Extending the Model (h(x) =full)

5.∗ θb 36,649 32,283 38,871
6.∗ θr 38,348 26,179 47,292

Test Statistics d /∈ IV d ∈ IV

T(observed)/T(critical at 5%) .96 1.36

There are 291 banks in 10 markets. ∗ θb is in-branch cost, θr is remote cost.

6.1 Digression: Multiple Equilibria and Counterfactual’s in Ishii’s game.

Ishii’s counterfactuals held fixed network. How to think about equilibrium network response?
This is taken from Lee and Pakes (2009, Economic Letters). Take Ishii’s information on Pitts-

field, Massachusetts and analyze the likely impact of a change in Pittsfield’s banking environment
(a hypothetical merger and unexpected shock to Pittsfield’s economy which changes the costs of
running an ATM).

There were eight banks before the merger, so we examine the actions of the seven remaining
banks in the market. We assume the merged bank has a profit function which consists of the
sum of the profits from the two banks which merged and starts with their ATMs, giving us an
initial allocation of ATMs to the seven banks of (9, 0, 3, 1, 0, 0, 1). Note that, as is often the case
in empirical work, there is significant heterogeneity across the firms inherited from past actions
and events (the banks differ in the number and locations of their branches, in the amenities they
provide customers...). We are assuming that these characteristics of the banks do not change.

The realized costs of agent i if it uses ni ATMs in period t are given by:

C(ni, t) = [b0,i + b1,i,t]ni + b2n
2
i

where (b0,i, b2) are known constants and b1,i,t is the random draw on the cost shock. These are iid
draws from a normal distribution with mean µ and variance σ2 that is common across firms. For
simplicity, we assume switching costs and fixed costs of each machine to be 0; we only focus on the
per-period operational costs.

Firms do not know their future cost shocks before they chose the number of ATMs they operate
in the next period, and we focus on Nash Equilibria in expected costs. In the first period after the
merger, each firm receives its own realization of the cost shock b1,i,t. As firms realize that their
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Table 1: Possible Equilibria for Four Mean Cost Specifications

Mean Cost (µ) 20,000 15,000 10,000 0

ATM Allocation # of ATMs Is Allocation An Equilibrium?

(4,0,4,0,0,1,1) 10 Yes No No No
(5,0,3,0,0,1,1) 10 Yes No No No
(4,0,4,0,0,1,2) 11 No Yes No No
(4,0,4,0,1,1,1) 11 No Yes Yes No
(5,0,3,0,1,1,2) 12 Yes Yes Yes Yes

costs have changed, each firm will use an average over cost draws after the switch in regimes to
form their expectation of costs for the next period (µ). There are no dynamics other than that
induced by learning about the likely value of the cost shocks and the likely play of competing firms.

6.1.1 Number and Nature of Equilibria

The first part of the analysis proceeds by simply enumerating the “limiting equilibria”: i.e., the Nash
equilibria when all firms know the expected value of the cost shock. Since banks are asymmetric,
there are 170, 544 different allocations of up to 15 ATMs among seven banks. Table 1 lists all
equilibrium allocations when firms know the expected value of the cost shock for different values
of µ.

Results.

• initial post merger allocation is (9,0,3,1,0,0,1) does not constitute a best response for any of
our cost specifications.

• the number of equilibria is always strikingly small in comparison to the number of total
possible allocations.

• within a specification for costs, the different equilibria are quite similar to each other (no two
equilibria for the same cost specification in which one firm differs in its number of ATMs by
more than one ATM,...)

• “comparative statics”; if an allocation which had been an equilibrium is no longer an equi-
librium when we lower the cost, this former equilibrium was always the equilibrium with the
least number of ATMs at the higher cost. If an allocation becomes an equilibrium allocation
when it had not been one at the higher cost, the new equilibrium allocation always has a
larger total number of ATMs then the equilibria that are dropped out (and those that are
dropped are always the equilibria with the lowest number of ATMs).

6.1.2 Equilibrium Selection through Belief Formulation.

Investigate the implications of different processes for forming beliefs about competitors’ play.

• Best response; each firm believes its competitors’ will play the same strategy in the current
period as they did in the prior period
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Table 2: Fraction of Rest Points at Alternative Equilibria

Mean (µ) 20,000 15,000 10,000 0

CV (σ/µ)a 1 .5 .25 1 .5 .25 1 .5 .25 1 .5 .25

Best Reply

4040011 .89 .87 .82
5030011 .10 .10 .13
4040012 .27 .14 .01
4040111 .40 .21 .02 .04b .00 .00
5030112 .01 .03 .06 .33 .65 .97 .94 1.0 1.0 1.0 1.0 1.0

Fictitious Play.

4040011 .47 .41 .41
5030011 .34 .44 .30
4040012 .00 .00 .00
4040111 .10 .01 .00 .00 .00 .00
5030112 .15 .15 .29 .90 .99 1.0 1.0 1.0 1.0 1.0 1.0 1.0

The initial condition is (9,0,3,1,0,0,1) for all runs and is never an equilibrium based on true expected costs.
a CV is the coefficient of variation of the cost shock. For the base specification where µ = 0, the variance of
the cost shocks were set to be the same as when µ = 20, 000.
b In this specification under Best Reply, approximately 2% of trials resulted in “cycling.”

• Fictitious play; each firm believes the next play of its competitors will be a random draw from
the set of tuples of plays observed since the regime change (and best responds accordingly).

Note: here we consider forming beliefs about competitor’s actions. An alternative would have been
to consider “learning” about the outcomes of one’s actions (that is I have a perception of the returns
to different actions and update those beliefs). We return to this second formulation when we come
to reinforcement learning.

Each run is stopped when we have converged to a single allocation, where convergence is defined
as having remained in the same allocation state for 50 iterations. This location was viewed as a
“rest point” of the process. Note that all rest points are Nash equilibria of the game where each
agent knows its mean costs. Table 2 provides the fraction of rest points at various equilibria for the
different cost specifications. We tried different mean cost-shocks and different coefficient variations
for those shocks.

Note that

• The variance in the cost shocks can cause a distribution of rest points from a given initial
condition.

• Apparently their is a dependence of the distribution of the equilibria on belief formulation
process. This is troubling because of the lack of evidence on the empirical relevance on how
one forms beliefs.

• On the brighter side, it appears that the distribution of the number of ATMs from the lower
cost specifications always stochastically dominated those from the higher cost specifications.
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7 A Very Brief Introduction to the Econometrics of Inequality
Estimators.

Take xi ∈ Ji and let h : X → R+ be a positive function of xi. Then if {d′i} are feasible choices
when di is chosen what are theory gives us

E

[∑
i

∆r(di, d
′
i, d−i, z

0
i , θ)⊗ h(xi)

]
≥ 0, at θ = θ0.

We will assume the observations are grouped into markets and that the difference between expec-
tations and realizations are not correlated across observations in different markets.

Estimator. Form sample analog and looks for values of θ that satisfy these moment inequalities.

Details Estimation.

Assume J markets (j = 1, . . . , J), with observations on (z, x, d) for all active agents. The markets’
observations are independent draws from a population of markets with a distribution, say P, that
respects our two assumptions.

Sample Moments.
Let

m(zj , dj , xj , θ) =

1

nj

∑
i

∆rj(dji , d
′, dj−i, z

j
i , θ)⊗ h(xji )

where nj is the number of agents in market j, and

m(PJ , θ) =
1

J

J∑
j=1

m(zj , dj , xj , θ)

while
Σ(PJ , θ)

is the sample variance of these moments.

Population Moments.
Let

m(P, θ) = Em(·, θ),
and

Σ(P, θ) = V ar(m(·, θ)).

Our assumptions imply
m(P, θ0) ≥ 0.

Estimator. If f(·)− ≡ min(0, f(·)) then

ΘJ = arg min
θ
‖m(PJ , θ)−‖.
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Note that :

• ΘJ may be a set (rather than a point).

• Not be surprised if there is no value of θ that satisfies m(PJ , θ) ≥ 0 in finite samples. E.g.

m(P, θ0) = 0 ⇒

Pr{m(PJ , θ0) ≥ 0} →(M→∞) 0.

Inference. Under standard conditions Θ̂J converges to Θ0 (for standard norms defined on sets).
There are at least three ways to obtain some indication of the precision of your set valued estimator.
One can

• Find a set of points which covers the true θ0 with required probability

• Find a set of points which covers the true identified set (Θ0) with required probability

• Define θ1,0 = infθ1{θ : θ ∈ Θ0} and θ1,0 analogously. Find an interval which covers(θ1,0, θ1,0)
with required probability.

I am going to focus on the third, but presumably if you wanted to do either of the first two you
would project them down onto the various axis when reporting results. The original paper on the
econometrics of all this was by Chernozhukov, Hong and Tamer (2007, Econometrica) and they
developed the first two techniques. For more on all of this you can look at the series of papers by
Andrews and his co-authors (most of which are in, or are forthcoming, in Econometrica)7. Use of
the third technique dates to PPHI.

We look for limiting distributions for the sample analogues of the lower and upper bounds

of each component of θ0, say [θ̂0,1, θ̂0,1], and we will assume that there are unique vectors (θ, θ)

associated with (θ1,0, θ1,0). We obtain those bounds from the limiting distribution of each of θ̂0,1

and θ̂0,1 separately, using the following inequality

Pr
{
θ0,1 ∈ [θ̂0,1, θ̂0,1]

}
≥ Pr

{
[θ0,1, θ0,1] ⊂ [θ̂0,1, θ̂0,1]

}
≥ 1 − Pr

{
θ̂0,1 > θ0,1

}
− Pr

{
θ̂0,1 < θ0,1

}
.

Note that a choice of θ̂0,1 and θ̂0,1 that sets the far right expression to 1−α is clearly conservative

for 1− α level coverage for both θ0,1, and for the interval [θ0,1, θ0,1].

Inference: Linear Case. The linear case

m(PJ , θ) = ZJ θ −WJ .

Then ΘJ and the “identified set”,

Θ0 = {θ : Z θ ≥ W, θ ∈ Θ}
7An accessible version of how to actually obtain the various estimates of precision can be found in my notes for

when I teach econometrics, and I will make that available on request
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are both convex and hence easy to analyze. Focus on the problem of finding confidence intervals
for the kth components of θ, θk. Let

Θk,0 = {θk : θ ∈ Θ0} = [θk,0, θk,0],

and
Θk,J = {θk : θ ∈ ΘJ} = [θk,J , θk,J ].

Note that Θk,J easy to compute (fmincom from matlab is sometimes used, but experience indicates
that a simplex method will do better).

To obtain distribution of estimators

• Simulate draws from a normal centered at (ZJ ,WJ) with covariance matrix equal to the
sample covariance of {(Zj,J ,Wj,J)}j times

√
2lnlnJ .

• If the draw generates a set estimator, evaluate the bounds functions θk and θk at the values
of the draws.

• If the draw generates a point, drop moments, in order of (Znsθ −Wns)+ until one gets a set,
and then record the bounds.

• Repeat this procedure, obtain a distribution for the bounds.

Note. This is an active area of econometric research; see also references cited at the beginning of
these notes.

8 Another example: Holmes 2011.

• Q: What are the benefits of store density for Walmart?

• Walmart diffusion: https://www.youtube.com/watch?v=EGzHBtoVvpc

• Idea: Walmart is vertically integrated into distribution (it owns both retail and regional
distribution and grocery distribution centers). Close stores allows for savings on distribu-
tion/trucking costs; however, cost is cannibalization.

• Dynamic structural model of Walmart store roll out (1962–2005). Perturbation approach:
Walmart could have changed what it did at each point in time; model assumes that observed
choices were (in expectation) optimal.

• Abstracts from oligopolistic interactions (?) and instead focuses on dynamics and cannibal-
ization.

• Focus of paper: Can ask how many and where to put new Walmarts/supercenters, and
how many and where to put new distribution centers. Focuses on where to put new Wal-
marts/supercenters conditioning on the other decisions.
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TABLE I

SUMMARY STATISTICS OF STORE-LEVEL DATAa

Store Type Variable N Mean Std. Dev. Min Max

All Sales ($millions/year) 3,176 70.5 30.0 9.1 166.4
Regular Wal-Mart Sales ($millions/year) 1,196 47.0 20.0 9.1 133.9
Supercenter Sales ($millions/year) 1,980 84.7 25.9 20.8 166.4

All Employment 3,176 254.9 127.3 31.0 812.0
Regular Wal-Mart Employment 1,196 123.5 40.1 57.0 410.0
Supercenter Employment 1,980 333.8 91.5 31.0 812.0

aEnd of 2005, excludes Alaska and Hawaii. Source: Trade Dimensions retail data base.

Census. The fourth is data on wages and rents across locations. The fifth is
other information about Wal-Mart from annual reports.

The first data element comprising store-level variables was obtained from
Trade Dimensions, a unit of ACNielsen. These data provide estimates of store-
level sales for all Wal-Marts open at the end of 2005. These data are the best
available and the primary source of market share data used in the retail indus-
try. Ellickson (2007) recently used these data for the supermarket industry.

Table I presents summary statistics of annual store-level sales and employ-
ment for the 3,176 Wal-Marts in existence in the contiguous United States as
of the end of 2005. (Alaska and Hawaii are excluded in all of the analysis.)
Almost two-thirds of all Wal-Marts (1,980 out of 3,176) are supercenters that
carry both general merchandise and food. The remaining 1,196 are regular Wal-
Marts that do not have a full selection of food. The average Wal-Mart has an-
nual sales of $70 million. The breakdown is $47 million per regular Wal-Mart
and $85 million per supercenter. The average employment is 255 employees.

The second data element is opening dates of the four types of Wal-Mart facil-
ities. The table treats a supercenter as two different stores: a general merchan-
dise store and a food store. The two kinds of distribution centers are general
(GDC) and food (FDC). Table II tabulates opening dates for the four types of
facilities by decade. Appendix A explains how this information was collected.
Note that if a regular store is later converted to a supercenter, it has an open-
ing date for its general merchandise store and a later opening date for its food
store. This is called a conversion.

The third data element, demographic information, comes from three decen-
nial censuses: 1980, 1990, and 2000. The data are at the level of the block group,
a geographic unit finer than the Census tract. Summary statistics are provided
in Table III. In 2000, there were 206,960 block groups with an average popula-
tion of 1,350. I use the geographic coordinates of each block group to draw a
circle of radius 5 miles around each block group. I take the population within
this 5-mile radius and use this as my population density measure. Table III re-
ports that the mean density in 2000 across block groups equals 219,000 people

8.1 Data

1. ACNielsen estimates of store-level sales for all stores open at the end of 2005.

2. Opening dates of four types of Walmart facilities.

3. Demographic information from 1980, 1990, and 2000 US Census at block group, finer than
Census tract. Population density from circle of 5mi radius centered at block group.

4. Local wages and rents from US Census Bureau Cuonty Business Patterns.

5. Walmart annual reports which include information on annual sales for earlier years (helpful
to understand cannibalization effect).

8.2 Model

• Stores can stock food f or general merchandise g. Stores are either regular (only g) or
supercenters (both f and g).

• Locations indexed by l = 1, . . . , L, where dl,l′ is distance between locations. BWt is set of
locations with a Walmart, BSt ⊆ BWt are supercenter sets.

• Rgjt(BWt ) are general merchandise sales revenues of store j at time t; Rfjt(BWt ) are food sales
of j (if j is a supercenter). Fixed gross margin µ so general merchandise profits for store j is
µRgjt(BWt ).

• Costs:

1. DistributionCostjt = τdgjt + τdfjt where d is distance to closest general or food distribu-
tion center (GDC or FDC); τ is cost per mile per period of servicing the store. Assumed
to be the same for food and general.

2. Variable Costs: fixed proportion of revenue, νLabor, νLand, νOther

3. Fixed Costs: c(Popdenj) = ω0 + ω1 ln(Popdenj) + ω2 ln(Popdenj)
2 depends on location

population density (urban locations disadvantageous).

• Assumptions: Fixed discount factor β = .95; exogeneous productivity growth ρt. Walmarts
don’t close once opened.
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BWt = BWt−1 +AWt
BSt = BSt−1 +ASt

where At are new stores of a given type opened at period t.

• Let a = (AW1 ,AS1 ,AW2 ,AS2 , . . .). Holding fixed number of new stores, will focus on optimal
location decision and hence actions that coincide with the number of stores actually opened.

max
a

∞∑
t=1

(ρtβ)t−1
[ ∑
j∈BW

[πgjt − c
g
jt − τd

g
jt] +

∑
j∈BSt

[πfjt − c
f
jt − τd

f
jt]
]

(6)

where πejt = µRejt −WagejtLabor
e
jt −RentjtLandejt −Otherejt for e ∈ {f, g}.

NB: sunk costs do not affect the objective of where to locate stores conditional on number of
stores that are opened.

8.2.1 Operating Profits

Consumer demand:

• Consumers can choose between outside option and any Walmart within 25mi radius (B̄Wl ).

u0 = b(Popdenl) + LocationCharlα+ ε0

b(Popdenl) = α0 + α1 ln(Popden) + α2(ln(Popden))2

where Popden = max{1, Popden}, Popden is thousands of people within 5mi radius, and
b′(·) ≥ 0 to capture idea that denser markets have better outside options.

Utility of Walmart given by:

ulj = −[ξ0 + ξ1 ln(Popden)]Distancelj + StoreCharjγ + εj

• Operating revenues: Rgj =
∑

l:j∈B̄Wl
λg × pgjl × nl where λg is spending per consumer and nl

are consumers at location l. Food defined similarly.

• Measurment error ηSalesj = ln(RDataj )− ln(Rgj (Ψ)) where Ψ is parameter vector from demand
model; assume that measurement error is iid normal and estimate using MLE.

• Add in data from annual reports: “As we continue to add new stores domestically, we do so
with an understanding that additional stores take sales away from existing units. We estimate
that comparative store sales in FY 2004, 2003, 2002 were negatively impacted by the opening
of new stores by approximately 1%.”

• Can calculate “cannibalization rate” for a given store by computing demand if no stores were
opened that year, and after the observed openings occurred. Seems to match; however, insofar
upper bound on degree of density economies closely connected to degree of cannibalization,
also explore results when cannibalization is constrained in 2005 to be 1. To be conservative,
use this result.
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sales in fiscal year 2004, 2003, 2002 were negatively impacted by the opening of new stores
by approximately 1%.

This same paragraph was repeated in the 2006 annual report with regard to
fiscal year 2005 and 2006. This information is summarized in Table V.12

To define the model analog of cannibalization, first calculate what sales
would be in a particular year for preexisting stores if no new stores were opened
in the year and if there were no new supercenter conversions. Next calculate
predicted sales to preexisting stores when the new store openings and super-
center conversions for the particular year take place. Define the percentage
difference to be the cannibalization rate for that year. This is the model analog
of what Wal-Mart is disclosing.

Table V reports the cannibalization rates for various years using the esti-
mated demand model. The parameter vector is the same across years. What
varies over time are the new stores, the set of preexisting stores, and the de-
mographic variables. The demand model—estimated entirely from the 2005
cross-sectional store-level sales data—does a very good job fitting the cannibal-
ization rates reported by Wal-Mart. For the years that Wal-Mart disclosed that
the rate was “approximately 1%,” the estimated rates range from .67 to 1.43.
It is interesting to note the sharp increase in the estimated cannibalization rate
beginning in 2002. Evidently, Wal-Mart reached some kind of saturation point
in 2001. Given the pattern in Table V, it is understandable that Wal-Mart has
felt the need to disclose the extent of cannibalization in recent years.

TABLE V

CANNIBALIZATION RATES, FROM ANNUAL REPORTS AND IN MODELa

From Annual Demand Model Demand Model
Year Reports (Unconstrained) (Constrained)

1998 n.a. .62 .48
1999 n.a. .87 .67
2000 n.a. .55 .40
2001 1 .67 .53
2002 1 1.28 1.02
2003 1 1.38 1.10
2004 1 1.43 1.14
2005 1 1.27 1.00b

aSource: Estimates from the model and Wal-Mart Stores, Inc. (1971–2006) (An-
nual Reports 2004, 2006).

bCannibalization rate is imposed to equal 1.00 in 2005.

12Wal-Mart’s fiscal year ends January 31, so the fiscal year corresponds (approximately) to the
previous calendar year. For example, the 2006 fiscal year began February 1, 2005. In this paper,
I aggregate years like Wal-Mart (February through January), but I use 2005 to refer to the year
beginning February 2005.

8.3 Bounding Density Economies

• Need to recover θ = (τ, ω1, ω2); τ is Walmart economies of density, ω are diseconomies of
population density.

• Linear Moment Inequality Framework: let there be M linear inequalities where:

ya ≥ x′aθ, a ∈ {1, 2, . . . ,M}

is assumed to hold for θ0. With K non-negative instruments for each a:

zakya ≥ zakx′aθ ∀ a, k (7)

Assume measurement error (ν1) on ya so we observe ỹa = ya + ηa where E[ηa|xa, zak] = 0.
Let mk(θ) = E[zakỹa] − E[zakx

′
a]θ; then mk(θ) ≥ 0 at true parameter vector. Let Q(θ) =∑K

k=1(min{0,mk(θ)})2.

Sample analogues:

m̃k(θ) =

M∑
a=1

zakỹa
M

−
M∑
a=1

zakx
′
a

M
θ

Q̃(θ) =

K∑
k=1

(min{0, m̃k(θ)})2

and let identified set Θ̂I = arg mintheta Q̃(θ). (Need to average across M inequalities to
remove measurement error).
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TABLE IV

PARAMETER ESTIMATES FOR DEMAND MODEL

Constrained
Parameter Definition Unconstrained (Fits Reported Cannibalization)

λg General merchandise spending per 1�686 1�938
person (annual in $1,000) (�056) (�043)

λf Food spending per person 1�649 1�912
(annual in $1,000) (�061) (�050)

ξ0 Distance disutility (constant term) �642 �703
(�036) (�039)

ξ1 Distance disutility (coefficient −�046 −�056
on ln(Popden)) (�007) (�008)

α Outside alternative
valuation parameters

Constant −8�271 −7�834
(�508) (�530)

ln(Popden) 1�968 1�861
(�138) (�144)

ln(Popden)2 −�070 −�059
(�012) (�013)

Per capita income �015 �013
(�003) (�003)

Share of block group black �341 �297
(�082) (�076)

Share of block group young 1�105 1�132
(�464) (�440)

Share of block group old �563 �465
(�380) (�359)

γ Store-specific parameters
Store age 2 + dummy �183 �207

(�024) (�023)

σ2 Measurement error �065 �065
(�002) (�002)

N 3,176 3,176
Sum of squared 205�117 206�845

error
R2 �755 �753
(Likelihood) −155�749 −169�072

for 2004 disclosed (Wal-Mart Stores, Inc. (1971–2006) (Annual Report 2004,
p. 20)) the following information:

As we continue to add new stores domestically, we do so with an understanding that addi-
tional stores may take sales away from existing units. We estimate that comparative store

• Mapping this to Walmart:

– Walmart objective in (6) is linear in θ. Define ya = Π(ao)−Π(a) for:

Π(a) =

∞∑
t=1

(ρtβ)t−1
( ∑
j∈BWt (a)

πgjt(a) +
∑

j∈BS(a)

πfjt(a)
)

(8)

ya represents incremental PDV of operating profit from implementing observed policy ao

instead of deviation a. xa will include the PDV of differences in distribution distances,
ln(Popden), and ln(Popden)2 from policy ao versus a.

– Dealing with measurement error and demand estimation error: see paper.
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TABLE VII

DISTRIBUTION OF VARIABLE INPUT COSTSa

Estimated 2005 Labor Costs

Annual Payroll Wages as
Quartile Store Location per Worker ($) Percentage of Sales

Minimum Pineville, MO 12,400 4.5
25 Litchfield, IL 19,300 7.0
50 Belleville, IL 21,000 7.6
75 Miami, FL 23,000 8.3
Maximum San Jose, CA 37,900 13.7

Estimated 2005 Land Value–Sales Ratios

Index of
Residential

Property Value Land Value as
Quartile Store Location per Acre ($) Percentage of Sales

Minimum Lincoln, ME 1,100 .0
25 Campbellsville, KY 32,100 1.2
50 Cleburne, TX 67,100 2.4
75 Albany, NY 137,300 5.0
Maximum Mountain View, CA 1,800,000 65.0

aPercentiles of distribution are weighted by sales revenue.

An issue that needs to be raised about the County Business Patterns wage
data is measurement error. Dividing annual payroll by employment is a crude
way to measure labor costs because it does not take into account potential
variations in hours per worker (e.g., part time versus full time) or potential
variations in labor quality. The empirical procedure used below explicitly takes
into account measurement error.

Turning now to land costs, Appendix A describes the construction of a prop-
erty value index for each store through the use of Census data. As discussed in
the Appendix, this index, along with property tax data for 46 Wal-Mart loca-
tions in Minnesota and Iowa, is used to estimate a land value to sales ratio for
each store. The distributions of this index and ratio are reported in Table VII.
Perhaps not surprisingly, the most expensive location is estimated to be the
Wal-Mart store in Silicon Valley (in Mountain View, California), where the ra-
tio of the land value for the store relative to annual store sales is estimated to
be 65 percent. The rental cost of the land, including any taxes that vary with
land value, is assumed to be 20 percent of the land value. For the median store
from Table VII (the Wal-Mart in Cleburne, Texas), this implies annual land
costs of about half a percent of sales (�5 ≈ �2 × 2�4). It is important to empha-
size that this rental cost is for the land, not structures. (Half of a percent of
sales would be a very low number for the combined rent on land and struc-

– Choice of deviations: Focus on pariwise resequencing – i.e., deviations where opening
dates of pairs of stores are reordered. E.g., store 1 in 1962 and store 2 in 1964; instead
open store 1 in 1964 and store 2 in 1962.

8.4 Results

1. Making a store closer to a distribution center by 1 mile yields a benefit of $3,500 / year.
Savings in trucking costs estimated to be about 850/year, so total savings 4 times larger.
Difference includes “value Walmart places on the ability of responding quickly to demand
shocks.”

2. If all 5K Walmart stores were each 100 miles further from their distribution centers, Walmarts
costs would increase by almost $2B per year.
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TABLE IX

DEFINITIONS OF DEVIATION GROUPSa

Deviation Deviation
Category Group Description (Store j′ Flips with Store j)

Store density Find the set of stores, S = {j� tj ≥ tstate
j + 10}.

decreasing For each j ∈ S, find all j′, where (i) tj′ ≥ tj + 3,
(ii) j′ is in a different state than j, and
(iii) tj′ ≤ tstate

j′ + 4. Take all of these and further
classify by group on the basis of �Da as follows:

1 −�75 ≤ �Da < 0
2 −1�50 ≤ �Da <−�75
3 �Da <−1�50

Store density Find the set of stores, S = {j� tj ≤ tstate
j + 5}.

increasing For each j ∈ S, find all j′, where (i) tj′ ≥ tj + 3,
(ii) j′ is in a different state than j, and
(iii) tj′ ≥ tstate

j′ + 10. Take all of these and further
classify by group on the basis of �Da as follows:

4 0<�Da ≤ �75
5 �75<�Da ≤ 1�50
6 1�50<�Da

Population density Take pairs of stores (j� j′) opening in the same state,
changing where tj ≤ tj′ + 2. Classify based on Popdenj (in units

of 1,000 people within 5-mile radius). Define density
classes 1, 2, 3, and 4 by Popdenj < 15�15 ≤ Popdenj < 40,
40 ≤ Popdenj < 100, and 100 ≤ Popdenj .

7 j in class 4, j′ in class 3
8 j in class 3, j′ in class 2
9 j in class 2, j′ in class 1

10 j in class 1, j′ in class 2
11 j in class 2, j′ in class 3
12 j in class 3, j′ in class 4

aNotes: The table uses the following notation: tj is the opening date of store j, tstate
j is the opening date of the

first store in the state where j is located, �Da is the present value of the increment in distribution distance miles (in
1,000s) from doing the actual policy a◦ instead of deviating and doing a. In words, to construct group 1, take the set of
all stores opening when there is at least one store in their state that is 10 years old or more. For each such store, find
alternative stores that open 3 or more years later in different states, where Wal-Mart has been in the different state
no more than 4 years when the alternative store opens. Openings for general merchandise stores and food stores are
considered two different opening events. In cases where a supercenter opens from scratch rather than as a conversion
of an existing Wal-Mart, there are two opening events. In all the pairs considered, a general merchandise opening is
paired with another general merchandise opening, and a food opening with another food opening.

ηa is mean zero conditional on χka , given the independence assumption already
made about εWage

jt and εRent
jt . Hence, χka is a valid instrument.

Let the set of basic instruments be defined by

za�k = Weighta×χka
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TABLE X

SUMMARY STATISTICS OF DEVIATIONS BY DEVIATION GROUP

Mean Values

�Π̃ �D

Deviation Brief Description Number of (Millions of (Thousands of �C1 �C2
Group of Group Deviations 2005 Dollars) Miles) (log Popden) (log Popden2)

Store density decreasing
1 −�75 ≤ �D< 0 64,920 −2.7 −.4 −.6 −3.0
2 −1�50 ≤ �D<−�75 61,898 −3.6 −1.1 −1.5 −9.0
3 �D<−1�50 114,588 −4.7 −3.0 −3.4 −22.2

Store density increasing
4 0<�D≤ �75 158,208 3.0 .3 −1.9 −17.2
5 �75<�D≤ 1�50 34,153 3.7 1.0 −3.6 −28.9
6 1�50<�D 16,180 5.9 2.1 −4.8 −37.7

Population density changing
7 Class 4 to class 3 7,048 1.2 .0 3.2 31.1
8 Class 3 to class 2 10,435 3.7 .0 3.4 25.7
9 Class 2 to class 1 14,399 5.3 −.1 3.5 19.3

10 Class 1 to class 2 12,053 −2.4 .0 −3.4 −19.3
11 Class 2 to class 3 14,208 .6 −.1 −3.9 −29.4
12 Class 3 to class 4 14,877 2.5 .0 −4.6 −44.9

All Weighted mean 522,967 −.2 −.6 −2.1 −15.6

for a weighting variable

Weighta = 1
tFirst
a∑
t=1

(ρtβ)
t−1

�

where tFirst
a is the first period that deviation a is different from a◦. This rescales

things to the present value at the point when the deviation actually begins.
Additional instruments are obtained by interacting the basic instruments

with positive transformations of the xa. Define x+
i�a ≡ xi�a − xmin

i , where xi�a is
the ith element of xa and xmin

i = mina xi�a. Analogously, x−
i�a ≡ xmax

i − xi�a for
xmax
i = maxa xi�a. Level 1 interaction instruments are obtained by multiplying

the x+
i�a and x−

i�a, of which there are six, by each of the 12 basic moments for
a total of 72 = 6 × 12 level 1 interaction moments. Analogously, we can take
the various second-order combinations, such as x+

1�ax
+
1�a� x

+
1�ax

+
2�a, and so on,

and multiply them times the basic instruments to create level 2 interaction mo-
ments, of which there are 252 = 21 × 12. In the full set of all three types of
moment inequalities, there are 336 = 12 + 72 + 252 restrictions.

Before moving on to the baseline results, I make a comment about opti-
mization error. The above discussion models the choice a◦ as the true solution
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TABLE XI

BASELINE ESTIMATED BOUNDS ON DISTRIBUTION COST τa

Specification 1 Specification 2 Specification 3
Basic Moments Basic and Level 1 Basic and Levels 1, 2
(12 Inequalities) (84 Inequalities) (336 Inequalities)

Lower Upper Lower Upper Lower Upper

Point estimate 3.33 4.92 3.41 4.35 3.50 3.67

Confidence thresholds
With stage 1 error correction

PPHI inner (95%) 2.69 6.37 2.89 5.40 3.01 4.72
PPHI outer (95%) 2.69 6.41 2.86 5.45 2.97 5.04

No stage 1 correction
PPHI inner (95%) 2.84 5.74 2.94 5.11 3.00 4.62
PPHI outer (95%) 2.84 5.77 2.93 5.13 2.99 4.97

aUnits are in thousands of 2005 dollars per mile year; number of deviationsM = 522�967; number of store locations
N = 3�176.

or τ ≥ $3�33.17 This is substantially looser than when ω1 =ω2 = 0 is imposed.
Now turn to the general problem of bounding τ. Let τ and τ̄ be the lower

and upper bounds of τ in the identified set ΘI . When a solution satisfying all
of the sample moment inequalities exists, as is the case here, the estimates of
these bounds are obtained through linear programs that impose the moment
inequalities and the a priori restrictions ω1 ≥ 0 and ω2 ≤ 0. Table XI presents
the results.

The first set of estimates imposes only the 12 basic moment inequalities.
Table X contains all the information needed to do this. The estimated lower
bound is in fact τ̂= $3�33, and this is obtained when ω1 = 4�28 and ω2 = −�50,
the values used above. In the solution to the linear programming problem,
moment 1 is binding, as are moments 9 and 12, and the remaining inequalities
have slack. The estimated upper bound is $4.92.

By adding in interaction moments, additional restrictions are imposed, nar-
rowing the identified set. The additional moments created when the basic mo-
ments [Ey]k − [Ex′θ]k ≥ 0 are multiplied by positive transformations of the
x are analogous to the familiar moment conditions for ordinary least squares
(OLS), (y − xθ)′x = 0. With both level 1 and level 2 interactions included,
the estimate of the identified set is narrowed to the extremely tight range of
$3.50–$3.67. This case with the full set of interactions will serve as my baseline
estimate.

17Because of rounding, there is a slight discrepancy in these two inequalities.
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