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1 Introduction

This article develops a computational framework to analyze dynamic auctions and
then applies it to illustrate the possible implications of different rules for information
exchange in that setting.

Dynamic auctions are sequential auctions in which the state of the bidders, and
therefore their evaluation of the good that is auctioned, changes endogenously depend-
ing on the outcomes of prior auctions. The value of winning an auction to produce
aircraft or ships depends on the backlog or the order book of the firm. Similarly, the
value of winning a highway repair project or a timber auction depends on whether the
inputs currently under the control of the firm are fully committed for the following
period. The fact that the auction is dynamic implies a rich set of strategic incentives.
For example, a firm may choose to allow a competitor’s state to transition to a point
where that competitor bids less aggressively in order to win a subsequent auction at a
lower bid.

A central feature of this environment is that competing firms may not have complete
information about each other’s state variables, at every point in time. Empirically, this
information asymmetry seems an important feature of many industries. Indeed, the fact
that some firms are observed to make an effort to share information, at times illegally,
underscores this general point (see the discussion below of the antitrust treatment of
information sharing in the US and EU).1

We provide a framework for analyzing dynamic auctions that allows for serially
correlated asymmetric information, which implies that a competitor’s prior bids are
signals of his current states. We use the framework to examine how the extent of
information sharing impacts competition in a dynamic sequence of procurement auc-
tions.2 The analysis sheds light on the extent to which dynamic considerations can
color the way antitrust regulators, procurement agencies, and other policy agencies
approach the regulation of information sharing. The specific model we investigate is
loosely based on the description of timber auctions in Baldwin, Marshall, and Richard
(1997), although, to keep the model simple, we make many departures from the precise
institutional features described therein. Having this specific empirical example in mind
eases much of the exposition.

In each period, two firms can bid for the right to harvest a lot of timber in a first-
price sealed-bid auction. Each firm has a stock of timber that it already has the right
to harvest (its inventory). This stock is private information, and its evolution is the
source of dynamics. To compete in the auction, firms must pay a participation fee and

1The account of timber auctions in Baldwin, Marshall, and Richard (1997) motivates many of our mod-
eling choices. Baldwin, Marshall, and Richard note several dimensions of private information, ranging from
production costs (called “overrun” in the industry), to the amount of timber in a lot (particularly in old-
growth forests) and the harvesting outcomes realized on timber lots located on private lands.

2The closest model to ours is the one estimated in the innovative contribution of Jofre-Bonet and Pe-
sendorfer (2003). This framework is further extended in Groeger (2014), Saini (2013), Balat (2015), and
Jeziorski and Krasnokutskaya (2016). Jofre-Bonet and Pesendorfer’s model (and those that follow) has pri-
vate information that is conditionally independent across states. That is, conditional on (observed) state
variables, knowing the private information of a rival last period provides no information as to the private
information of the rival this period, which is not the case in our model. This means that the competitor’s
prior period bid is a signal on its current state, and that information sharing has persistent value across
periods.
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submit a bid simultaneously. A firm may also choose to not participate. The winner
of the auction, if any, receives the right to harvest the lot, and discovers how much
harvestable material it contains. A harvest with a random outcome then occurs, which
depletes the stock of timber each firm has in inventory.

Our benchmark model has full revelation of the state variable every T periods.
That is, each firm observes the stock of unharvested timber of its competitor every T
periods. Information sharing is modeled as shrinking the time interval between full-
revelation periods so that we can investigate the possible implications of different rules
of information exchange. We also investigate a model in which firms decide whether
to share information. Voluntary information sharing involves firms making a choice
every T periods as to whether to reveal in every period for the next T periods. For
voluntary information sharing to occur over the next T periods, all firms must want to
share information. Finally, we compare the results from these models with those we
obtain from a model with myopic firms.

The numerical analysis of this game illustrates how information sharing can affect
bidding behavior at a given state by increasing the precision of the firm’s perceptions
about its competitors’ states. This, in turn, shapes the desirability, and therefore the
likelihood of being in different states. An important point to bear in mind is that,
conditional on the information they have, firms bid to maximize the expected NPV of
their individual profits, rather than industry profits, in the model. On one hand, an
increase in information increases the intensity of bidding and decreases profits in most
(but not all) states. On the other hand, because firms have more precise information
about when their competitor will be more aggressive, they are able to spend a greater
fraction of the time in states where bidding is less aggressive. These states are the ones
in which both firms’ inventory is higher. The net effect is that information sharing leads
to an increase average profits as well as an increase in the total sales of the auctioned
timber.

Through this channel increasing information increases the value of firms. However,
in our voluntary information-exchange game, firms have difficulty committing to ex-
change information and most often choose not to share. In addition, we find that in a
model with myopic firms, the extent of information sharing has negligible effects.

This article also has a methodological contribution. A framework for analyzing
dynamic auctions in which a competitor’s past behavior has a direct effect on a firm’s
perceptions about its competitor’s likely action must allow for serially correlated asym-
metric information. Fershtman and Pakes (2012) considered the numerical analysis of
dynamic games with serially correlated asymmetric information, and we provide the
modification required to use it in order to analyze dynamic auctions. Perhaps more
importantly, we extend their notion of a restricted experience-based equilibrium by
adding a consistency requirement on the boundary of the recurrent class of states–an
extension that is possible to use in all dynamic games with asymmetric information.
The boundary-consistency condition refines the set of computable equilibria (or, equiva-
lently, mitigates potential multiple equilibria issues), and we provide intuition for when
and why it can be used. We also show how to compute and test for boundary-consistent
equilibria.

The results comprise an example of what can happen when firms share information
based on the computational output from one parameterization. To that extent, the
results provide a form of a possibility result. Setting methodological contributions
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aside, we feel that the nature of the possibility result is important, in that in our
setting information exchange is essentially welfare-neutral, despite having a real impact
on firms’ conduct (as noted in the paragraphs above). As such, this example illustrates
the conceptual issues that may need to be confronted, and the level of care needed, in
policy work or antitrust enforcement in this area.

This article is organized as follows. In the remainder of this section, we discuss the
related literature and provide a brief review of the role of information sharing in an-
titrust policy. Section 2 describes our baseline model, and then the information-sharing
and the voluntary-information-sharing variants of the model. In section 3, computa-
tional details are described. A reader not concerned with computational details can
skip this section and proceed directly to section 4, which discusses the numerical anal-
ysis, focusing on the competitive impact of information sharing. Section 5 concludes.

Related Literature

Our article is closely related to the literature on the numerical analysis of dynamic
oligopolistic games that uses the Ericson and Pakes framework (1995; for a survey of
this literature, see Doraszelski and Pakes, 2007). Recent applications of this methodol-
ogy to questions related to antitrust policy include Besanko, Doraszelski, and Kryukov
(2014) on predatory pricing, and Mermelstein, Nocke, Satterthwaite, and Whinston
(2014) on mergers. Within this literature, the closest articles to ours are Saini (2013)
and particularly Jeziorski and Krasnokutskaya (2016). Both articles apply the Markov
perfect equilibrium concept to auction settings, exploring the optimal procurement
policy given capacity-constrained suppliers and subcontracting, respectively.3

Jeziorski and Krasnokutskaya (2016) find that reducing the relevance of private
information (through subcontracting) lowers information rents and profits. This result
contrasts with our finding that although reducing private information decreases profits
for a given state, it induces firms to spend more time in states with less intense bidding,
thereby leading to an increase in average per-period profits. Our article’s setting differs
from Jeziorski and Krasnokutskaya’s in at least two ways. First, in Jeziorski and
Krasnokutskaya, private information (auction participation costs and marginal costs)
is independent across firms and time, whereas in our setting, it is correlated across
firms and time and depends on the firm’s own and competitors’ actions. Second, we
focus on the effect of reducing the amount of private information among firms, whereas
Jeziorski and Krasnokutskaya focus on the effect of private information becoming “less
important” as subcontracting allows firms to modify unfavorable cost draws and control
future costs by mitigating backlog accumulation.

As noted, our article differs from this literature in that our focus is on informa-
tion asymmetry, as in Fershtman and Pakes (2012). That article focuses on capital-
accumulation games, whereas we consider a more complex structure where, as we are
modeling an auction, the evolution of a firm’s state depends not only on its own action
(its bid), but also on the bids of its competitors. We also introduce and operationalize
a boundary-consistency condition that narrows the set of computed equilibria and can
be rationalized either by prior information or experimentation.

Within the auction literature, Maskin and Riley (2000) consider asymmetric auc-
tions and show that sealed bidding tends to favor weaker bidders, whereas in an open

3Both these articles build on Jofre-Bonet and Pesendorfer (2003).
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auction, the bidder with the highest value win. Athey, Levin, and Seira (2011) extend
the framework to a repeated auction. They consider a theoretical model of a repeated
auction and then use data on timber auctions to conduct an empirical analysis of
the effect of the type of auction (open or sealed bid) on the firms’ participation and
bidding.4

Our article also relates to the empirical literature on bidding collusion. The lit-
erature uses several approaches for examining whether an auction is competitive or
collusive. See, for example, Porter and Zona (1993, 1999), Baldwin, Marshall, and
Richard (1997), Pesendorfer (2000), Bajari and Ye (2003), and Asker (2010). Aoyagi
(2003) considers collusion in a repeated auction when bidders are allowed to communi-
cate with each other before each auction. In another article, Athey and Bagwell (2008)
consider collusion between competitors in a repeated homogenous-good-Bertrand mar-
ket in which costs (types) are private information and evolve over time according to
an exogenous Markov process. In contrast to the environment considered here, the
evolution of costs (types) in that model is unaffected by the actions of any player. We
do not model collusion explicty in our model, but we do examine the effect of informa-
tion exchange regarding the firms’ inventories on the firms’ participation and bidding
behavior.

The policy implications of our article relate also to the extensive literature on in-
formation sharing in oligopoly; see Clarke (1983), Gal-Or (1985, 1986), Shapiro (1986),
and Kirby (1988). For a survey of this literature, see Kuhn and Vives (1995). More
recent empirical work includes Doyle and Snyder (1999) and Luco (2017). More recent
theoretical work involving dynamic oligopoly models includes Overgaard and Møllgaard
(2008) and Kubitz and Woodward (2019).

Information exchange and antitrust policy

The application in this article is to information sharing between bidders, in which bid-
ders share information as to their state. Hence, we consider the sharing of strategically
valuable information as distinct from an explicit price-fixing or bid-rigging agreement.
Though explicit agreements to fix prices are per se violations of the antitrust laws, the
legal treatment of information sharing among competitors is less clear.5 The legality
of an exchange of price information is determined in part by the extent to which the
audience is restricted. Clearly, a merchant who posts prices in a public display is com-
municating price information to competitors but is not in violation of the law. More
problematic is the communication of price information between competitors in a way
that consumers do not have access to.6 U.S. courts apply a rule of reason test to de-
cide whether the exchange of price information constitutes an unreasonable restraint of

4Bonatti, Cisternas, and Toikka (2017) have a related article that considers the evolution of a dynamic
Cournot game.

5The canonical statement of the per se nature of price fixing under section 1 of the U.S. Sherman Act is
United States v. Socony-Vacuum Oil 310 U.S. 150 (1940). Information sharing also tends to fall within the
scope of section 1 of the Sherman Act. See the majority decision in United States v. Container Corp. 393
U.S. 333 (1969).

6In Container Corp, the U.S. Supreme Court held that, despite any agreement on pricing, the exchange
of information about specific prices offered to specific customers was a violation of the antitrust laws. This
case created confusion as to whether per se treatment applied to information sharing. This confusion was
clarified in United States v. Citizens & Southern National Bank 422 U.S. 86., which explicitly adopted a
rule of reason approach. In doing so, the court appealed to the idea that price exchange facilitated price
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trade.7 Factors that are taken into account include the level of market concentration,
the fungibility of the products, the nature of the information exchanged, its timeliness
and specificity, and whether the information is made publicly available.8

U.S. courts take a sympathetic view of the sharing of non-price information, rec-
ognizing that efficiencies are more likely from the sharing of information regarding
production processes and costs. For instance, the Supreme court in the 1925 Maple
Flooring Manufacturers decision held that:

“... corporations which openly and fairly gather and disseminate information
as to the cost of their product, the volume of production, ..., stocks of
merchandise on hand, ... without however reaching or attempting to reach
any agreement or any concerted action with respect to prices or production
or restraining competition do not thereby engage in unlawful restraint of
commerce...”9

Contemporary guidance from the FTC and DoJ states, “The sharing of information
relating to price, cost, output, customers, or strategic planning is more likely to be of
competitive concern than the sharing of less competitively sensitive information.”10

This suggests a somewhat more nuanced view in modern times. The EU, by contrast,
has tended to take a harsher view of both price and non-price information-sharing
agreements. The exchange of information relating to future prices is considered a
restriction of competition by object (equivalent to a per se offense in the U.S.).11 This
may include non-price strategic information.

Our application illustrates that a harsh (per se) approach to the sharing of infor-
mation can be misguided, in that bidders can engage in information sharing that is
welfare neutral. As a result, there is no welfare-based justification for enforcement in
this setting.

2 A Model of a Dynamic Auction

We consider a model with n firms in the market and no entry into or exit from the
industry. Each firm can harvest and sell a portion of their stock of lumber at a fixed
price in each period. The actual quantity that can be sold in each period depends on
a firm-specific random outcome of a harvesting process from a stock of timber that
has not yet been harvested, and is private information. The stock will be increased
if the firm wins a procurement auction, which occurs every period. The procurement
auction is a simple first-price sealed-bid auction. Participation in the procurement
auction is costly, and participation decisions are public information observed by all

stabilization (a form of price fixing).
7In this context, an unreasonable restraint would be one that synthesizes or facilitates a cartel-like pricing

structure. Information exchange may also constitute a facilitating practice in inferring the existence of an
explicit price-fixing conspiracy.

8A modern discussion of the judicial approach taken can be seen in the decision of Justice Satomayor,
while sitting as a judge on the Second Circuit Court of Appeals, in Todd v. Exxon Corp 275 F.3d 191 (2001).

9See Maple Flooring Manufacturers’ Assn. v. United States 268 U.S. 563 (1925).
10See FTC/DoJ’s April 2000 Antitrust Guidelines for Collaborations Among Competitors, page 15.
11See the EU 2011 Guidelines on the applicability of Article 101 of the Treaty on the Functioning of the

European Union to horizontal co-operation agreements and Dole Food Company et al. v. Commission.
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firms. However, the amount of lumber per lot won in the auction is random and
observed only by the winning firm.

There are two types of periods: periods with full information exchange and periods
without information sharing. In our baseline model, full information exchange occurs
every T periods. This assumption has a number of possible rationales and keeps the
information set finite.12

We begin by describing the timing of the events that occur within a period. Then,
we describe the overall structure of the game. Next, we define the equilibrium con-
ditions, explain our computational procedure, and then provide and compare results
from models with different amounts of information sharing.

Timing

1. Each firm brings into the period a stock of timber that can be harvested (ωi,t).

2. Every period begins with the announcement of a first-price sealed-bid auction.

3. Firms observe the realization of their stochastic participation fee. We assume
Fit ∼ U [Fl, Fh]. The realization is not observed by rival firms.

4. Each firm decides whether to participate in the auction. All the firms that de-
cide to participate submit their bids simultaneously. At the time of bidding,
participation decisions of rival firms are not observable.

5. The rules of the auction define an increment b. Bids must be multiples of this
increment. Hence, bids must be elements of the set B ≡

{
b, 2b, 3b, ..., b

}
.

6. The highest bid wins. If high bids are tied, then the winner is decided randomly,
with each tied bid having an equal chance of winning. We denote the probability
of winning by firm i by pw(b, b−i), where b is the firm’s bid and b−i are competing
bids. The winning bid, the identity of the winner, and the participants in the
auction become public information.

7. If information exchange occurs, it does so at this point. If it is a period of
information exchange (which occurs every T periods), then ωi,t of all the firms
is revealed. Otherwise, the new public information revealed in the period is;
who participated in the auction, denoted as pt (a vector), who won the auction
at period t, denoted by i∗t , and the winning bid b∗t . We denote the new public
information as ξnt ≡ [i∗t , b

∗
t ,pt]. In a period of information exchange, the new

public information is [i∗t ,ωt], the identity of the firm that won the auction and
the observed state ωt ≡ {ωi,t}.13

12See Fershtman and Pakes (2012) for a list of ways to keep the information set finite. Information
revelation every T periods is convenient for us, because it allows us to directly compare equilibria based
on variation in T. We can justify our structure by assuming that a regulator imposes mandatory periodic
information revelation, or assuming the existence of a trade group that facilitates the sharing of information
every T periods. In an empirical setting, the issue that would arise that is analogous to setting T here is how
to define the state space. One way to do this is to let the data guide the selection by asking which candidate
elements of the state space best explain observed actions. If, after selecting the observed states, serial
correlation exists in the residuals, one might want to allow, in addition, a serially correlated unobservable.
An example of this data-based approach to state-space specification in dynamic models can be found in
Blundell, Gowrisankaran, and Langer (2018).

13Note that in a period of information revelation, the winning bid and the participation decision of that

7



8. The winner discovers the amount of timber on the plot it won. This amount is
given by θ + ηt, where θ is the average amount and ηt is an i.i.d. (across time)
discrete random variable. ηt is not observed by the competing (losing) firms.
The timber in stock (ωi,t) is updated accordingly. There is a random realization
of the ability to extract, e + εi,t, where εi,t is a discrete random variable with
probabilities p(εi,t). The draws on εi,t are independent over firms and not observed
by competitors.14

9. Harvest is made and each firm sells all its harvested timber at a unit price of $1.
Thus, a firm’s per-period revenue is given by min{ωi+I{i=i∗}(θ+η), e+εi}, where
I{i=i∗} is an indicator function that takes the value of 1 if i wins the auction, and
zero otherwise.15 The quantity harvested by firm i is not observable by other
firms.16

10. Note that if b = ∅ signifies no participation, the above implies that at the time
of bidding, the firm knows that its profits will be

π(b, Fi, ωi, η, εi) =
[
I{i=i∗}

(
min{ωi + (θ + η), e+ εi} − bi

)
+ (1− I{i=i∗}) min{ωi, e+ εi}

]
(1)

− {b 6= ∅}Fi,

and that I{i=i∗} will depend on b−i, the competitors’ bids. The minimum reflects
the fact that the amount sold cannot be larger than either the amount in stock
(which is ωi + (θ + η) if the firm won the auction or ωi if not) or the amount
harvested (e+ εi).

11. After profits are realized, all firms update their private ωi.

Firms’ Strategy Space

In general, the strategy space could include everything observed from the history of the
game. Most of the early applied literature focused on equilibria with strategies that
depend only on variables that are either “payoff” or “informationally” relevant. The
payoff-relevant variables are defined, as in Ericson and Pakes (1995) or Maskin and
Tirole (2001), to be those variables that are not current controls and affect the current
profits of at least one of the firms. In a game with asymmetric information, observable
variables that are not payoff relevant will affect behavior if they are informationally
relevant. A variable is informationally relevant if and only if some player can improve its
expected discounted value of net cash flows by conditioning on the variable, even if no

period do not enter the public information because they are payoff and informationally irrelevant. They do
not provide any additional signal on the ω of the firms, because these ω’s are revealed in that period.

14The game form could be simplified by collapsing these ηt and εi,t into one random variable (most simply
by removing ηt altogether). Such a simplification could maintain private information about the evolution of
each firm’s ω. By contrast, the specification we adopt stays close to the motivating timber-auction example
at the expense of a little more complication. It also injects additional informational asymmetry at the point
at which a firm wins an auction. This specification is broadly consistent with the descriptions of timber
auctions in Baldwin, Marshall and Richard (1997).

15Here, and in what follows, we drop time subscripts, except where they add clarity.
16Otherwise, the observable harvested quantity may serve as a signal regarding ωi.
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firms’ strategy depended on it; for more details see, Fershtman and Pakes (2012). That
article also shows that in models with periodic revelation of information there exists
an equilibrium that only conditions on the revealed information and the information
that has become available since the revelation. We focus on this equilibrium in the
remainder of the article.17

The information set of firm i consists of public and private information. The public
information at the beginning of period t, denoted by ξt consists of: τt ∈ [1, . . . , T ], the
time since the last information exchange, ωt−τt , the last revealed ω vectors, and the τt-
period history of winning bids, winner identities, and participant identities. Formally,
ξt = {τt, ωt−τt , ξnt−1, ..., ξnt−τt}.

18 Information revelation occurs when τt = T (which is
period τt = 0 for the next cycle). The private information at the point in time decisions
are made includes ωi,t and Fi,t. However, as Fi,t is i.i.d. and enters the value function
linearly, it does not have an independent effect on future values, whereas the other
state variables do. As a result, continuation values are determined by Ji,t = (ωi,t, ξt),
but both Ji,t and Fi,t are needed to determine bids.

Strategies

A firm’s strategy has two elements: the participation strategy and the bidding strategy.
We denote firm i strategy as b(Ji, Fi) → {B ∪∅}, where b = ∅ signifies no partici-
pation. The subscript i is added only where doing so helps differentiate between the
firm’s bi (equivalently, b) and competing bids, b−i.

19

The Value Function

We let V (Ji, Fi) be the value of the game for player i given information (Ji, Fi). We
have

V (Ji, Fi) = max
{
W (∅|Ji),max

b∈B
[W (b|Ji)− Fi]

}
, (2)

where (i) W (∅|Ji) is the value of the game if the firm decides not to participate in the
auction in that period, and (ii) W (b|Ji) is the value when the firm participates and
bids b ∈ B.

17The equilibrium is defined formally in section 2.
18Note that for a period with information revelation, the public information includes only the identity of

the winner in the auction and not the winning bid or the participant identities, as these variables are not
informationally relevant.

19If a static version of our game is considered (for example, by imposing that players are myopic), the
existence of a pure-strategy equilibrium is somewhat unclear. Bidders in our setting have a “type” that
consists of ωi and Fi: ωi is discrete, whereas Fi is continuous. Importantly, in our model players do not
observe the entry cost F−i of their rivals or the rivals’ inventory state ω−i. (Note that even in a period
with information exchange, the players observe only the inventory level from the beginning of the period
after their participation and bidding decision have been done.) Depending on the parametrization, Fi and
ωi may introduce enough “mixing” to ensure the existence of pure strategy equilibria. It is clear, however,
that as the support of Fi approaches a point mass, or as the grid of ωi’s becomes sufficiently coarse relative
to the bid grid, problems with the existence of pure strategy equilibria will arise. In our numerical analysis
in section 4, we choose the bid grid to be {0.5, 1, 1.5, 2}. Restricting the numbers of bids firms can facilitate
computation, as the algorithm requires updating and saving the continuation value for each possible bid in
every state that players visit. See section 3 for more detail on the computation algorithm.
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Now consider the value of the game when firm i participates in the auction and bids
b ∈ B. For every possible Ji, we define pw(b|Ji) to be the player’s perception about the
probability of winning the auction when it bids b. Recall that i∗ is the winning firm,
so p(ξ′|ξ, ωi, b, i = i∗) is the firm’s perception of the probability distribution of future
public information given its current public (ξ) and private (ωi) information should it
win the auction with bid b. Analogously, p(ξ′|ξ, ωi, b, i 6= i∗) is the firm’s perception
of the probability distribution of future public information, should the firm lose the
auction. The equilibrium assumption below will restrict these perceptions.

Recall that the firm receives revenue from selling its harvested lumber, where the
amount harvested is the minimum of the extraction ability of the firm (e + εi) and
the firm’s actual stock (ωi + (θ + η) if it wins, and ωi otherwise). Thus, the firm’s
expectation of current-period revenue (which excludes Fi) is

πe(b|Ji) =
∑
εi,η

[
pw(b|Ji)

(
min{ωi + θ + η, e+ εi} − b

)
+

[1− pw(b|Ji)] min{ωi, e+ εi}
]
p(εi)p(η). (3)

Letting β be the discount factor, the firm’s expectation of its continuation value con-
ditional on bidding b ∈ B is

W (b|Ji) = πe(b|Ji)

+ pw(b|Ji)β
∑

εi,η,ξ′F ′i

V
(
ω′(ω, η, εi), ξ

′, F ′i

)
p(ξ′|ξ, ωi, b, i = i∗)p(F ′i )p(η)p(εi)

+ (1− pw(b|Ji))β
∑

εi,ξ′,F ′i

V
(
ω′(ω, εi), ξ

′, F ′i

)
p(ξ′|ξ, ωi, b, i 6= i∗)p(F ′i )p(εi),

(4)

where ω′(ω, η, εi) is the updated ωi when the firm does win the auction, and is a function
of the random outcomes of the size of the lot won (η) and the harvesting decision (εi);
that is, ω′(ω, η, εi) = max{0, ωi − (e + εi) + θ + η}. When the firm does not win
the auction, its updated ω is a function of the initial ω and the random outcome of
the harvesting process, εi; that is, ω′(ωi, εi) = max{0, ωi − (e + εi)}. Note that the
continuation value when a firm does not participate in the auction, or W (∅|Ji), is
obtained by setting pw(∅|Ji) = 0 in equations (3) and (4).

Restricted Experience-Based Equilibrium

We now derive for this game the conditions of a restricted experience-based equilibrium
(a REBE), as defined in Fershtman and Pakes (2012). This derivation requires us to
define three objects and then detail the restrictions that the equilibrium notion places
on the values of those objects. To ease the notation in the definition below, we let
s be the set consisting of the payoff- and informationally relevant states of all the
firms. That is, s = (J1, ..., Jn), where all the Ji have the same public component ξ. So
s = (ω1, ..., ωn, ξ). We will say that Ji = (ωi, ξ) is a component of s if it contains the
information set of one of the firms whose information is included in s. We define the
set of possible states as S = {s : (ω1, . . . , ωn) ∈ Ωn(ω), ξ ∈ Ω(ξ)}.
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Definition of a REBE: A restricted experience-based equilibrium consists of

1. A set R that is a subset of the state space (i.e. R ⊂ S).

2. Bidding and participation strategies, b∗(Ji, Fi), for all Fi ∈ [Fl, Fh] and for every
Ji that is a component of any s ∈ S.

3. A set of numbers W ≡ {W ∗(b|Ji)b∈B∪∅} , for every Ji that is a component of
any s ∈ S, that have an interpretation as the firm’s perceptions of the expected
discounted values of current and future cash flows conditional on its information
set should it bid b or not participate in the auction (i.e. where b = ∅).

For these objects to define a REBE, they must satisfy the following three conditions.

C1: R is a recurrent class. The Markov process generated by any initial
condition s0 ∈ R, and the transition kernel generated by {b∗(Ji, Fi)}Ji∈s∈S,Fi∈[Fl,Fh]
has R as a recurrent class; that is, with probability 1, any subgame starting from an
s0 ∈ R will generate sample paths that are within R forever.

C2: Optimality of strategies. Conditional on W ≡ {W ∗(b|Ji)b∈B∪∅}Ji∈s∈S ,
the strategies are optimal. That is,

b∗(Ji, Fi) = arg max
b∈B∪∅

[W ∗(b|Ji)− {b 6= ∅}Fi] . (5)

C3: Consistency of values on R. Consistency requires that the perception of
discounted values, generated by every possible choice at every Ji that is a component
of an s ∈ R, equals the expected discounted value of returns generated by that choice
from that Ji, where expectations are taken using the distribution of the outcomes from
that Ji generated by the policies in C2. This distribution is the empirical distribution
of outcomes that the firm would actually observe given equilibrium play, so we denote
them by µE(·|·). Formally, for every b ∈ B ∪∅, W ∗(b|Ji) , the equilibrium evaluations
satisfy

W ∗(b|Ji) = πE(b|Ji) + β
∑
ε,η,Fi

V (J ′i , Fi)µ
E(J ′i |b, Ji)p(η)p(ε)p(Fi), (6)

where J ′i is the realization of the following period’s Ji ≡ (ωi, ξ),

πE(b|Ji) =
∑
εi,η

[
µEw(b|Ji)

(
min{ωi + θ + η, e+ εi} − b

)
+

[1− µEw(b|Ji)] min{ωi, e+ εi}
]
p(εi)p(η), (7)

µEw(b|Ji) is the empirical probability of winning if the firm bids b at Ji, or

µEw(b|Ji) =
∑

J−i,F−i

Pr(i = i∗|b, b∗−i(J−i, F−i))µE(J−i|Ji)p(F−i), (8)

µE(J ′i |b, Ji) is the empirical probability of transiting from Ji to J ′i if the firm plays b

µE(J ′i |b, Ji) =
∑
J−i

µE(J ′i |b, Ji, J−i)µE(J−i|Ji) (9)
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where µE(J̃−i|J̃i) is the empirical probability of the competitors’ state J̃−i conditional
on the firm’s own state J̃i given by

µE(J̃−i|J̃i) =
µE(J̃−i, J̃i)

µE(J̃i)
≡
∑∞

t=0 I{(J−i,t, Ji,t) = (J̃−i, J̃i)}∑∞
t=0 I{Ji,t = J̃i}

, (10)

and µE(J ′i |b, Ji, J−i) is the empirical probability of J ′i given (b, Ji, J−i), which is ob-
tained differently in revelation and no-revelation periods. In a no-revelation period,
the new information revealed is ξnt ≡ [i∗t , b

∗
t ,pt] and

µE(J ′i |b, Ji, J−i) =
∑
F−i

Pr(ω′i, ξ
n
t |b, b∗−i(J−i, F−i), Ji, J−i)p(F−i), (11)

whereas in a revelation period ωt is revealed so J ′i = (ω′i,ωt, i
∗
t ) and

µE(J ′i |b, Ji, J−i) =
∑
F−i

Pr(ω′i,ωt, i
∗
t |b, b∗−i(J−i, F−i), Ji, J−i)p(F−i). ♠ (12)

Two aspects of this definition influence the discussion that follows. First, when
a bid b results in a transition to a point outside the recurrent class (which implies
b 6= b∗(Ji)), µ

E(J ′i |b, Ji, J−i) can be computed, but V (J ′i , Fi) is not constrained by
condition C3, as C3 only applies to points in the recurrent class. We come back
to this point in section 2 where we introduce the notion of boundary consistency.
Second, Fershtman and Pakes (2012) deal with a capital-accumulation game where the
distribution of ω′ depended only on the firm’s own policy, Ji, and the primitives of
the problem. Then, the distribution of J ′i given (Ji, b) for b 6= b∗(Ji) can be computed
from the data generated by the equilibrium and knowledge of the primitives. Because
the bid of a firm’s competitors affects the distribution of ω′i in an auction, our problem
is not a capital-accumulation game. In this non-capital-accumulation game, the only
information that is in the data is the distribution of J ′i given (Ji, b

∗(Ji)), and some
experimentation may be required for the agent to learn the distribution of J ′i given
(Ji, b 6= b∗(Ji)). We come back to in this point in our discussion of computation in
section 3.

It is helpful to clarify the conceptual and computational differences between a REBE
and a Markov perfect Bayes equilibrium (an MPBE).20 If we were to use an MPBE,
we would have to define the players’ beliefs about the types of their competitors (i.e.,
their current ω−i) for every possible information set. In addition, we would need to
formalize how those beliefs are updated and ensure their consistency with the equi-
librium strategies. This would be a formidable task in a setup with a large number
of states.21 A REBE only requires firms to have perceptions regarding the expected

20As discussed in Fershtman and Pakes (2012), the self-confirming equilibrium of Fudenberg and Levine
(1993) also has a somewhat similar flavor to REBE in various dimensions.

21In our numerical analysis with two firms, the number of states visited in computation for the baseline
specification is greater than 7 million. Requiring beliefs to be derived to support an MPBE, even for just this
subset of the state space, would require considering beliefs as to the probability of facing at least 10 different
ω−i’s for each state (this assumes that using MPBE keeps the configuration of the state space the same
– it may be that some contraction of the state space may be possible under MPBE but this is something
we have not explored). At least for potential algorithms that we can envisage, this alone increases the
computation by at least an order of magnitude (additionally, recall that an MPBE requires consistent beliefs
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returns from actions at states (the W ’s), and those perceptions need only be consistent
with outcomes at states that are actually part of equilibrium play. We conjecture that
any set of outcomes supported by an MPBE will be able to be supported by a REBE
but the reverse is not the case; a REBE requires less restrictive conditions then an
MPBE.

Instead of requiring specifications for beliefs about the types of other players, a
REBE assumes that players use their own experience (outcomes from previous periods)
to form an estimate of expected returns from different possible actions. For example,
in our environment each firm has experience in participating in the periodic auctions,
and based on its experience forms a perception of the probability of winning with bid b
at the information set Ji. At equilibrium these perceptions are given by the empirical
distribution generated by the firm’s experience of winning at Ji. Were it not to rely
on experience, the firm would need to have a perception regarding the probabilities of
the types of their rivals, use the equilibrium notion to construct a distribution of the
bids of other firms given their perceptions of the competitors’ likely types, and then
use that distribution to construct the probability of winning for every possible bid b.
Part of the REBE’s appeal is that the use of experience simplifies both the firm’s and
the analyst’s problem. In a REBE, it is past experience that restricts (and, at least
at an s ∈ R, actually determines) the players’ perceptions about future values. In the
MPBE, past experience plays no direct role.

Another difference between a REBE and an MPBE is a REBE fully specifies equi-
librium conditions only for the recurrent class, or on R. The reason is that a firm’s
experience will only lead to accurate perceptions for states that are visited repeat-
edly, that is, for the states in R. In the MPBE, the equilibrium specifies equilibrium
conditions and beliefs for all possible states including those that are never visited as
a result of equilibrium play. As explained in the next subsection, the beliefs about
off-equilibrium play may be important determinants of the implications of the model.
In that subsection we consider a condition (boundary consistency) that restricts per-
ceptions of values at certain points outside of R in a REBE in a way that we think
would be appropriate for many applied settings.

Before leaving this subsection, we note an additional difference between the con-
ditions satisfied by a REBE and the conditions satisfied by an MPBE. Continuation
values are expectations, and more than one distribution function can lead to the same
expectation. Even at points in R a REBE does not require equilibrium perceptions
of outcomes to be consistent with a Bayesian posterior on competitors’ actions. In a
sense, this difference is a technical one, because it is the continuation values per se
that determine actions, not the perceptions that lead to them. However, this differ-
ence enables one to compute a REBE using a learning algorithm that is much simpler
than the methods likely required to compute an MPBE (see section 3 for details). As
a result, a REBE might both provide a closer approximation to actual behavior and
enable researchers to analyze a broader set of issues.

Appendix A computes and compares a REBE with an MPBE in a simple textbook-
style model in which policies and values can be derived analytically. This simple

in every point in the state space). Moreover, formulating a process to ensure these beliefs were consistent
with Bayes rule, where possible, given the strategies, is something we understand to be beyond the scope of
the current literature other than in very specific model formulations (see Bonatti et al. (2017) and Board
and Meyer-Ter-Veyn (2018)).
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example may be helpful to readers who want to familiarize themselves with REBE in
a more familiar game form.

Strengthening REBE: Boundary Consistency

It will be helpful to distinguish between two (mutually exclusive and exhaustive) sub-
sets of states in R. If optimal policies are followed by all agents at any state in R,
then the transition from that state will be to a state in R with a probability of 1.
However, there may be some states in R where if a firm chose a feasible, though not
optimal, policy, the state might transition to a point not in R. We refer to such states
as boundary states. We refer to states in R that would only transition to other points
in R regardless of which policies are followed as interior states.

The perceptions at points outside of R are not tied down by equilibrium condition
C3. So the perceptions of what would happen were a feasible policy followed from a
boundary point need not be consistent with what would actually happen were that
policy followed.22 As a result, different perceptions of what would happen if a non-
optimal feasible policy were chosen can lead to different recurrent classes. This is a
source of multiplicity of the equilibria that can be generated by a REBE that is absent
from the equilibria generated by an MPBE. This subsection considers selecting a subset
of the REBE equilibria that can be generated in this way through using a restriction
that is both likely to be appropriate for many (though not all) applied problems, and
can relatively easily be used in analyzing them (see subsection 3).23

If firms have prior knowledge or experiment with off-the-equilibrium path policies at
boundary points, then we might expect off-the-equilibrium path behavior at boundary
points to satisfy some restrictions. This section provides one such restriction: that
the actual value of off-the-equilibrium-path play from a boundary point is equal to the
perceived value of off-the-equilibrium-path play at those points (recall that condition
C1 guarantees that these perceptions are defined on all of S). We call this restriction a
boundary-consistency condition, as it, together with condition C2, ensures that playing
any feasible policy at a boundary point would generate a perceived discounted value
that is not greater than that of the optimal policy. Note that to impose this condition,
we need to only calculate discounted values for profits along sample paths before they
re-enter the recurrent class (if they do re-enter) as we can use C3 above to evaluate
the periods thereafter.

To formalize our condition, we need to define the set of actions that could be
taken from points in the recurrent class that would generate outcomes that are not
in the recurrent class. To this end, let supp[ps′(·|bi, b∗−i, s)] be the support of the
probability distribution over next-period states generated by actions (bi, b

∗
−i) and initial

state s = (Ji, J−i). The boundary set of couples (b, s), which we denote by B, is the
set of action-state combinations such that if (i) s = (Ji, J−i) ∈ R, (ii) action b is taken
by i, and (iii) equilibrium actions are taken by the other firms, then the support of the

22To see this point, note that V (J ′i , Fi) = max
{
W (∅|J ′i),maxb∈B[W (b|J ′i) − Fi]

}
. C3 requires that

W ∗(b|Ji) be consistent with current-period profits and V (J ′i , Fi), but does not require similar consistency
for W (b|J ′i or W (∅|J ′i) if J ′i /∈ R.

23Of course, in an empirical problem the data are likely to generate restrictions on these perceptions; see
the discussion in Pakes (2016).
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probability distribution for s′ has a point that is not in the recurrent class. Formally,

B ≡{
(b ∈ B ∪∅), (J, J−i) = s ∈ R) : ∃F−i s.t. supp[ps′(·|b, b∗(J−i, F−i), s)] ∩ (s′ /∈ R) 6= ∅

}
,

(13)

where B is the set of bids and ∅ is the empty set.
The additional condition that needs to be satisfied for the one-period deviation to

actually yield an outcome with a value that is less than the value of the optimal play
is stated formally in C4 below. In this condition, we use γ to index periods as the
off-equilibrium-path policy is played.

C4: Boundary Consistency. ∀(b, Ji) component of (b, s) ∈ B (as defined in
(13)) and for every Fi,

W (b∗|Ji)− {b∗(Ji, Fi) 6= ∅}Fi ≥
∑

J−i,F−i

[
π(b, b∗−i(F−i, J−i), Ji, Fi)

+

∞∑
γ=1

βγ
∑
sγ ,Fγ

π(b∗i (Ji, Fi), b
∗
−i(F−i, J−i), Ji, Fi)p(sγ |sγ−1, b∗,Fγ)p(Fγ)

]
p(F−i)µ

E(J−i|Ji), ♠

(14)

where π(b, b∗−i(F−i, J−i), Ji, Fi) ≡ πE(b|Ji)−{b 6= ∅}Fi, and π(b∗i (Ji, Fi), b
∗
−i(F−i, J−i), Ji, Fi)

is defined analogously. F = (Fi, F−i), and p(sγ |sγ−1, b∗,Fγ) is the probability of reach-
ing state sγ at time γ given that at time γ − 1, the state is sγ−1, participation fees are
Fγ , and the players play the equilibrium strategies b∗.24 Thus, the expression on the
right side of the inequality in C4 represents the expected discounted values of current
and future cash flows if the firm bids b in the current period and plays equilibrium
strategies b∗ in all subsequent periods; and its competitors play equilibrium strategies
in the current and future periods.

Definition of a Boundary-Consistent REBE: We call an equilibrium that
satisfies C1 to C4 a boundary-consistent REBE.

For any sample path (i.e. any {sγ}∞γ=1), we define γR = minγ{γ : (sγ) ∈ R} as the
number of periods from which the firm first re-enters the recurrent class after leaving
it. Then, we can replace

∞∑
γ=γR

βγ
∑
sγ ,Fi

π(b∗i (Ji, Fi), b
∗
−i(F−i, J−i), Ji, Fi)p(sγ |sγ−1, b∗,F)p(Fi) (15)

in C4 with βγR
∑

Fi
V (sγR , Fi)p(Fi). We provide a formal test for the existence of

boundary-consistent policies below. The fact that we can replace the infinite sum in
C4 with βγR

∑
Fi
V (sγR , Fi)p(Fi) eases the computational burden of the test.

As a final matter, this boundary-consistency notion can be further strengthened
by extending it to points in the recurrent class that are one step (or more) removed

24The probability distribution p(sγ |s, b∗, {Fτ}γτ=1) is derived recursively, with p(s1|b∗, s) =∑
F−i

p(s1|bi, b∗−i(J−i, F−i), s)p(F−i), and for γ > 1, p(sγ |b∗, sγ−1) =
∑

F p(sγ |b∗, sγ−1,F)p(F).
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from the set of boundary points B. In the appendix, an example is provided in which
boundary consistency rules out a REBE, and this one-step extension of boundary
consistency would rule out another. In the computational analysis of the dynamic
auction modeled here, we found only one equilibrium that failed boundary consistency
(see section 4.2), but, as explained in section 3, that finding is likely a result of tradeoffs
we made in how we computed our equilibria.

Information Sharing

We study the role of information sharing between firms participating in a sequence of
procurement auctions. In our benchmark case, information is shared every T periods.
Between these periods, firms do not observe the evolution of their competitors’ states;
however, they do observe the public information, which may help in predicting their
competitors’ behavior. We then compare our baseline model with two models that allow
for information exchange at more frequent intervals. The only difference among them
is the extent of information sharing as we do not allow for any additional mechanism
that facilitates coordination among firms. We also assume that when information is
exchanged firms reveal their true state.25

Information Exchange (IE)

The first information-sharing model has a mandatory information exchange every pe-
riod. Therefore, in the IE model, at the beginning of each period, a firm’s private
information includes its own current stock, ωi,t, and the public information includes
the identity of the winner and the ω-vector from the last period: [i∗t−1,ωt−1]. Shrinking
the interval at which information gets revealed is straightforward to implement (both
for the analyst and the firms) within our framework relative to alternative approaches
of modeling information sharing (e.g. explicitly giving firms with more accurate be-
liefs about competitors’ states, ω−i,t in each period). Formally, we compute the model
already described with the constraint that T = 1. We denote this model as IE.

Voluntary Information Exchange (V IE)

In the second information-sharing model, we adjust the baseline model such that in
the period with a forced information exchange occurs, firms also make a decision on
whether to share information in every period for the next T − 1 periods. If one of the
firms does not wish to share information, no voluntary information sharing occurs over
the next T − 1 periods, and in the T th period firms choose whether they wish to share
information in the subsequent T −1 periods.26 We call this model the V IE model and
describe it in more detail now.

25Truthful revelation may require careful design of the incentives surrounding the agreement. To explore
this area in the context of explicit cartels in auction markets, see, for example, Graham and Marshall (1987),
McAfee and McMillian (1992), and Mailath and Zemsky (1991).

26Requiring information sharing to last for T-1 periods (rather than, for instance, allowing a new choice to
be made very period) means: (a) the state space does not expand unduly (if choices were made every period,
then we would need to keep track of every outcome and choice in each period between forced revelations);
and (b) the structure of the game deviates minimally from the baseline, easing exposition, comparisons to
the baseline, and implementation.
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The period index, τ = 0, 1, . . . T −1, designates the time from the period of manda-
tory information exchange, such that information exchange occurs at τ = 0(≡ T ). At
τ = 0, each firm also needs to decide if it wishes to be part of an information-exchange
scheme. The decision of whether to share information, R̃i ∈ {0, 1}, is made simultane-
ously with the participation and bidding decision. R̃i = 1 denotes that firm i wishes
to share information. Information is actually exchanged, denoted by R = 1, only when
R̃i = R̃−i = 1.

The timing of the game is adjusted so that the sequence described in section 2
changes as follows. If τ = 0, step 4 is replaced with

Each firm finds its cost of participating in the auction (Fi,t). All the firms then
simultaneously; i) decide whether to participate in the auction and if so submit
a bid, and ii) decide whether to reveal information. If both firms agree to reveal
information, there is information exchange over the next T periods and the vol-
untary information exchange state R is set to 1. R is 0 otherwise. At the time of
bidding, participation decisions of rival firms are not observable.

For τ > 0, we replace step 7 with

Information exchange occurs at this point. If R = 1, ωi,t of all the firms is revealed
in addition to the new public information (i.e. who won the auction). If R = 0,
the new public information revealed in the period is the same as in the baseline
model that is ξnt = [i∗t , b

∗
t ,pt] .

In the V IE game, the firms’ information set is different from in the B game in that
the public information also includes the most recent information-sharing indicator, or
R ∈ {0, 1}. That is, for every τ > 0 the public memory, ξt includes also the last
information-revelation status R ∈ {0, 1} as this indicates if, in the remaining T − τ
periods, the firms will exchange information. On the other hand, we do not keep R̃i
or R̃−i in memory, as they are not informational relevant due to the fact that in the
period in which decisions on R̃ are made there is forced information revelation.

The information-exchange decision: At periods when τ = 0, firms need to
decide if they wish to exchange information in the next T periods. In those periods,
we let R̃ ∈ [0, 1] indicate the decision over whether to exchange information (R̃ = 1) or
not (R̃ = 0). We define the value of the game for player i given information (Ji, Fi, R̃)
as

Ṽ (Ji, Fi, R̃) = max
{

max
b∈B

(W (b, R̃|Ji)− Fi),W (∅, R̃|Ji)
}

(16)

where W (b, R̃ = 1|Ji) and W (b, R̃ = 0|Ji) are the firm’s perceptions of the expected
discounted value of current and future cash flows, given the choice of bid and the choice
to reveal information in the next T periods, conditional on the firm’s information set.
The firm submits R̃ = 1 if and only if Ṽ (Ji, Fi, R̃ = 1) ≥ Ṽ (Ji, Fi, R̃ = 0). The actual
exchange state, our R, has R = 1 if and only if R̃i = R̃−i = 1.

When τ = 0, W (b, R̃ = 0, Ji) is analogous to W (b, Ji) in equation (4). When τ = 0
and R̃ = 1, there is a probability of moving into different R states that depends on the
perceptions of whether the competitor will choose to reveal. We let p(R = 1|Ji, R̃ = 1)
be the firm’s perception of that probability given R̃i = 1 and Ji. We use this perception
combined with equation (4) to form W (b, R̃i = 1|Ji). For τ > 0, the dynamics are
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similar to the B case when R = 0, and are similar to the dynamics of the IE case
when R = 1.

Definition of a REBE for the V IE case: The definition of a REBE for the
V IE case is analogous to that for the baseline and IE cases but with the differences
we now consider. In the V IE in periods with τ > 0, the public information ξ includes
the outcome of the last voluntary information exchange; that is, R ∈ {0, 1}. At τ = 0,
the optimal policies are given by

R̃∗(Ji, Fi) = arg max
R̃∈{0,1}

[
W (b∗(Ji), R̃|Ji)− {b∗(Ji) 6= ∅}Fi

]
, (17a)

b∗(Ji, Fi) = arg max
b∈{B∪∅}

[
W (b, R̃∗(Ji)|Ji)− {b 6= ∅}Fi

]
. (17b)

Before going to our results, we explain the computational algorithm we use to obtain
them. A reader who is not interested in the computational algorithm should proceed
to section 4.

3 Computation and testing

This section provides a reinforcement-learning algorithm that computes a REBE for
our baseline model. We then provide a test for boundary consistency of a computed
REBE.

The algorithm models players as having perceptions on the value that is likely to
result from the different actions available to them at each state. The players choose
the actions that are optimal given those perceptions and the realized participation fees.
The realizations of random variables whose distributions are determined by the chosen
actions and the current state lead to a current profit and a new state. Players use this
profit, together with their perceptions of the continuation values they assign to the
new state, to update their perceptions of the values of the starting state. They then
proceed to choose an optimal policy for the new state that maximizes the perception
of the value from that state. This process continues iteratively.

As explained in Fershtman and Pakes (2012), the reinforcement-learning algorithm
described above is an algorithm that firms could actually use to learn the values associ-
ated with various actions. If the game is a capital-accumulation game structured such
that the transition probabilities for the private-information component of an firm’s
state depend only on the given firm’s own policies, and those policies do not influence
the evolution of public information, then the firm would learn the distribution of fu-
ture states conditional on all of its possible actions. This is not necessarily the case
when the game is not a capital-accumulation game, such as the sequence of auctions
we consider here. The reason is that in a general game a firm might never know what
the evolution of its state would have been if it had played an action off the equilibrium
path, even if that action would have kept the firm in the recurrent class with a prob-
ability of 1. For example, in the auction game we consider here, a firm that wins the
auction at an optimal bid will not learn from repeated equilibrium play what would
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have happened if it had bid a lower value (because in this auction game firms do not
observe the non-winning bids of competitors).

We could perturb the algorithm to maintain the analogy with learning by forcing
firms to experiment with different policies at each state (as in Fudenberg and Levine
(1998)). This approach would, however, increase the complexity of the algorithm. A
less computationally burdensome way of computing a REBE is to use knowledge that
the computer has in its memory, but the firm does not have, to update the values
associated with all policies (even those the firm does not take).27

We begin this section by outlining the computational algorithm for an arbitrary set
of initial conditions and providing a test of whether the output of the algorithm consti-
tutes a REBE. We then discuss how one can test whether the output of the algorithm
satisfies boundary consistency, that is, with the stronger notion of equilibrium that
ensures that feasible, though non-optimal, actions at the boundary points are indeed
non-optimal.

The Algorithm

The algorithm consists of an iterative procedure and subroutines for calculating initial
values and profits. We begin with the iterative procedure. Each iteration, indexed by
k, starts with a location that is a state of the game (the information sets of the players)
sk = [Jk1 , ..., J

k
n ], and has objects in memory, Mk = {Mk(s) : s ∈ S}. Each iteration

updates both the location and the memory. The rule for when to stop the iterations
consists of a test of whether the equilibrium conditions defined in the last section are
satisfied. We begin with the basic algorithm and then move on to testing. We consider
ways to increase the efficiency of the basic algorithm in the results section.

Memory: The elements of Mk(s) specify the objects in memory at iteration k for
information set J , and hence the memory requirements of the algorithm. Often, there
will be more than one way to structure the memory, each with different advantages.
Here, we focus on a simple structure that will always be available (though not neces-
sarily always efficient; see Fershtman and Pakes, 2012).

Mk(s) contains a counter, hk(s), that keeps track of the number of times we have
visited s prior to iteration k. If hk(s) > 0, it also contains

{W k(b|Ji)}b∈B∪∅. (18)

If hk(s) = 0, nothing is in memory at location s. When we need to evaluate policies at
an s at which hk(s) = 0, we have an initiation procedure that sets

{W k(b|Ji)}b∈B∪∅ = {W 0(b|Ji)}b∈B∪∅. (19)

The choice of initial conditions, the {W 0(b|Ji)}b∈B∪∅, is discussed below.

Updating at sk: We find the values in memory associated with different b for each
firm at location sk, take a random draw on Fi, and determine the optimal bid as

b∗(Jki , Fi) ≡ argmaxb∈B∪∅
[
W k(b|Jki )− {b 6= ∅}Fi

]
. (20)

27This is a general point that applies equally to games without private information. The computational
approach adopted in Besanko et al. (2014) provides a helpful comparison.
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These bids determine which, if any, player wins the auction. Let bk ≡Maxi{b∗(Jki , Fi)}
be the highest bid at iteration k. If bk 6= ∅, an auction occurs. We assume that if an
auction occurs, and more than one firm bids bk, a lottery determines the winning bid.

The winning bid (bk), the identity of the winner (ik∗), and the participation decisions
of all firms (the vector pk) enable us to update the public information sets as

ξk+1 = {τk = 0}
(
ωk, τk+1 = 1, ik∗

)
+ {τk 6= 0}

(
ξk(τk + 1),pk, ik∗, b

k
)
, (21)

where ξk(τk + 1) is the notation for ξk with τ changed from τk to τk + 1. That is,
if we are in a full-information-exchange period (if τk = 0), we reveal all information
about ω, delete the variables in ξk (as the revelation of ω makes them irrelevant), and
add the identity of the winning bidder. If τk 6= 0, we simply add the newly generated
information (ik∗, b

k,pk) to the old information set and increase its τ by one.
After bids are submitted and information is revealed, but before the next auction

occurs, the firm that wins the auction gathers its new timber and all firms sell what
they can to the market. The random draws from the auctioned lot (η) and from the
harvests (εi for each i) are realized and each firm’s stock of timber is augmented as

ωk+1
i = max{0, ωki − (e+ εi) + {i = i∗} (θ + η)}. (22)

Thus, the information prior to the next auction is given by

Jk+1
i = {ξk+1, ωk+1

i }, and sk+1 = {Jk+1
1 , . . . , Jk+1

n }, (23)

where it is understood that ωki is omitted from firm’s Jk+1
i .

Updating the Values in Memory: The algorithm uses the information gener-
ated by the random draws that lead to the new location to update firms’ perceptions
of the values associated with the different policies. The updating is “asynchronous” in
that we only update objects in memory associated with the location sk, but we update
each component of {W k(b|Jki )}b∈B∪∅ for all i at that sk. In other words, we update
the continuation values for the policies not taken as well as for those taken.

The update for each W k(b|Jki ) assumes that the profits and the continuation state
that would have accrued to the firm had it chosen that b are those that would have been
generated by the competitor’s chosen policy, the current state, and random draws from
the primitive processes. That is, we assume that the “realized” value that would have
been obtained from playing that b was one draw from the expected value of choosing
strategy b at Jki . The “realized” value is evaluated as the profits it would have earned
had it played “b” plus its current perception of the discounted continuation value
from the state that it would have moved to. More formally, let Jk+1

i (b, bk−i, ·) be the
updated information set were we to follow the updating procedure defined above after
substituting b for bki in those formulas. This procedure generates ξk+1(b, bk−i, ·) and

ωk+1
i (b, bk−i, ·). Then, the perceptions of the value for taking action b at state Jki are

updated as

W k+1(b|Jki ) =
hk(Jki )

hk(Jki ) + 1
W k(b|Jki ) +

1

hk(Jki ) + 1

[
π
(
ωki (b, bk−i, ·), ξk(b, bk−i, ·)

)
− b{i = ik∗}

+β
∑
F′

V
(
ωk+1
i (b, bk−i, ·), ξk+1(b, bk−i, ·),F′)

)
p(F′)

]
.

(24)
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This updating procedure sets the current perception of the value of taking action b
at state J ik equal to a simple average of what the perception of taking action b would
have been had the firm taken that action every time in the past that it had reached J ik.
Notice that if W k(b|Jki ) = W ∗(b|Jki ), then the expectation of W k+1(·) is W k(·); that
is, if we get to an equilibrium set of valuations, the algorithm will tend to stay there.28

Though this averaging procedure does satisfy the Robbins and Monro (1951) criteria
for convergence of a stochastic integral, it is unlikely to be efficient. One reason is
that the earlier values are associated with less precise evaluations. We come back to
discussing ways of increasing computational efficiency in the results section, and now
turn to the testing procedure.

Testing Procedures

Appendix A provides a detailed explanation of how to test whether the output of the
algorithm satisfies the conditions of a REBE. It is analogous to the test described in
Fershtman and Pakes (2012), so in the text, we suffice with a brief overview of how to
construct the test statistic. We then consider testing for boundary consistency. This
concept is new to this article, and the test has elements that differ from the test for
REBE as it requires testing for the validity of moment inequalities. Accordingly, we
go over the test for boundary consistency in more detail.

Testing for a REBE

The test is designed to check whether the computed values, together with the policies
and the recurrent class that they generate, satisfy conditions C1 to C3 above. We stop
the algorithm at a particular iteration, k, and conduct the test based on the values of
W k(b|Jki ) in memory at that point. In describing the test, we denote these values by
W ∗(b|Ji).

The test is based on simulating a sample path with the optimal policies generated
by W ∗(b|Ji). Because the state space is finite, the simulated path will wander into a
recurrent class after a finite number of iterations, and stay within that class thereafter.
Every point within that class will be visited repeatedly. We keep a record of each point
visited in the test’s simulation run in separate memory.

The first time a particular point is visited, we record the simulated continuation
value resulting from taking every possible action at that point. The values are given by
the profits plus the discounted continuation value (evaluated by {W ∗(·|·)}) generated
by each action, the policy chosen by competitors, and the simulated random draws on
the primitives.29 We also record the square of this continuation value and initiate a
counter for the number of times this point was visited in the simulation run. Recall
that we visit each point in the recurrent class repeatedly. At each subsequent time
a given point is visited, we again calculate a simulated continuation value for each
possible policy and then form an average of the simulated continuation values from
each time the point was visited for all policies at the point. A similar averaging is used

28As in other methods of computing solutions to dynamic games, this algorithm is not converged. Though
we have not had convergence problems in our calculations, formally, all we can do is test whether it has
converged. We provide the test in the next subsection.

29Because the stage game has simultaneous moves, we can evaluate a counterfactual choice of a given
firm’s policy by substituting the policy and and the optimal policies of competitor into this calculation.
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for the continuation value squared. When the simulation run is stopped, the memory
for each point visited consists of the average of past simulated continuation values from
that point, the average of the continuation values squared, and the number of times
the point has been visited in the test run.

The squared difference between W ∗(b|Ji) and the estimated average continuation
value for playing policy b at Ji is the mean squared error of our estimate of W ∗(b|Ji). It
can be additively decomposed in the standard way into the bias squared of our estimate
and the variance of our estimate. The variance is unbiasedly estimated by the average
of the squared value minus the estimated average squared. So by differencing the mean
squared error from the estimate of the variance, we are able to get an unbiased estimate
of the bias in our estimator for W ∗(b|Ji). Our test statistic is a weighted average of
the percentage bias (squared) in our estimates of W ∗(b|Ji). We weight the different b
at a given Ji equally, and the sum over b at different Ji by the number of times that
Ji was visited in the simulation run.

More formally, the test is an L2(PR(ns)) norm of the bias in the sum of simulated
continuation values as estimates for W ∗, where PR(ns) refers to the simulated estimate
of the distribution of recurrent states generated by W ∗. We accept the test when the
test statistic is less than .001–heuristically when our R2 is above .999. For more details,
see appendix B.

Testing for Boundary Consistency (Condition C4).

We begin with a verbal explanation of the test for a given {W (b|Ji)}b,Ji . Initially, we
run a 5-million-iteration simulation from the last point visited in the algorithm. We
consider the points visited during the simulation as the points in the recurrent class,
and tabulate the fraction of times each of those points is visited during this simulation
run, denoted by {h(Ji)}Ji .

We then start new simulation runs from every point visited in this simulation run
for every possible policy from that point. This procedure is analogous to the simulation
procedure used in the test for a REBE, except that in the boundary-consistency test,
we have to do it for every possible policy. We continue each of the simulation runs
for every (b, Ji) until the run enters a point in our estimate of the recurrent class.
We keep track of the discounted profits that the firm earns from the simulation run
until the simulation enters the recurrent class, and add to this the discounted proposed
equilibrium continuation value from the entry point to the recurrent class. Under the
null of a boundary consistent REBE, the result is an unbiased estimate of the expected
discounted value from taking the policy b at Ji. This value is tabulated and averaged
with the other simulated discounted values obtained from the given (b, Ji). We then
determine which of the (b, Ji) are boundary couples by checking if there exists any
simulation from the given (b, Ji) that does not enter the recurrent class immediately.
Finally, we introduce a test of C4 and apply it to the boundary couples.

We now provide a more formal description of the testing procedure. For each point
Ji and each b ∈ B∪∅, start R simulation runs using the policies generated by {W (·|·)}.
Index the runs from each (b, Ji) couple by r and let the sequence of states visited during

the rth simulation run be {Ji,γr}
γ∗r
γr=0, where γ∗r is the period in the simulation run where

the simulation enters the recurrent class (or some sufficiently large number, which we
take as 100).

Our estimate of the discounted value of net cash flows from run r for the couple
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(b, Ji) is

Ŵr(b|Ji) ≡
γ∗r−1∑
γr=0

βγr

(
π
(
b(Ji,γr , Fi,γr), b(J−i,γr , F−i,γr), ωi,γr , εi,γr , ηγr

))

−
γ∗r−1∑
γr=0

βγr{b(Ji,γr , Fi,γr) 6= ∅}Fi,γr + βγ
∗
rW (b∗|Ji,γ∗r ), (25)

where b(Ji,0, Fi,0) = b is the policy we are evaluating. We keep in memory the average
of Ŵr(b|Ji), the average of Ŵr(b|Ji)2, and the maximum of γ∗r from the R simulation
runs from each (b, Ji).

Let χ(b, Ji) = 1 whenever maxr γ
∗
r (b, Ji) 6= 1 , where γ∗r (b, Ji) is the γ∗ associated

with a particular (b, Ji). Then,

B̂ = {(b, Ji) : χ(b, Ji) = 1} (26)

is our estimate of the set of boundary couples. For each of these couples, we have a

sample mean W
R

(b|Ji) that is an unbiased estimate of the population mean from R
sample paths (in our case R = 20). Then, we use the average of the sum of squares of

Ŵr(b|Ji) and this sample mean to calculate an unbiased estimate of V ar[W
R

(b|Ji)].
We now use this information to form a test. We are testing inequalities, that is,

whether the boundary point policies lead to lower discounted values of future net cash
flows that are compared to the optimal policy at the Ji associated with the boundary
point. Therefore, we have to use a test statistic that is not pivotal whose distribution
does not have a standard form (like the chi-square or normal). We define the statistic
below and then explain how we can construct its distribution under the null that our
conditions are satisfied. We accept the the null of boundary consistency if the observed
value of the test statistic is less than the 95th quantile of the distribution we construct.

The observed test statistic for boundary consistency for the points in
B̂. Let B̂(Ji) = {b : (b, Ji) ∈ B̂ ⊂ B ∪∅} and #B̂(Ji) be the number of elements in
B̂(Ji). Also let

T (Ji) =
1

#B̂(Ji)

∑
b∈B̂(Ji)

( [W
R

(b|Ji)−W (b∗|Ji)]+
W (b∗(Ji))

)
, (27)

where [W
R

(b|Ji)−W (b∗|Ji)]+ = max[W
R

(b|Ji)−W (b∗|Ji), 0].
Let JB̂ be the set of Ji for which there is an element in B̂. Recall that h(Ji) is the

number of visits to the point Ji in the initial simulation run, and calculate for each
Ji ∈ JB̂

q(Ji) =
h(Ji)∑

Ji∈JB̂
h(Ji)

. (28)

Our test statistic is
T (B̂) =

∑
Ji∈JB̂

q(Ji)T (Ji). (29)

23



The simulated distribution of the test statistic under a conservative
null: We now simulate the distribution of, T (B̂), under the null that W (b|Ji) =
W (b∗|Ji) for each (b, Ji) ∈ B, thereby insuring the size of the test.30 For each (b, Ji) ∈
B̂, take ns independent random draws from a normal with mean zero and variance

V ar[W
R

(b|Ji)], and call them, z(b, Ji)1, . . . z(b, Ji)ns (we set ns = 50). For each draw,
indexed by r = 1, . . . , ns, calculate

T̃ (Ji)r =
1

#B(Ji)

∑
b∈B̂(Ji)

( [z(b, Ji)r]+
W (b∗(Ji))

)
, (30)

and
T̃ (B̂)r =

∑
Ji∈JB̂

q(Ji)T̃ (Ji)r. (31)

Let T̃ (B̂).95ns be the 95th percentile of the distribution of T̃ (B̂)r. Then, we accept the
null of

H0 : Boundary Consistency

if and only if
T̃ (B).95ns > T (B). ♠

Initial Conditions and Boundary Consistency

Recall that there may be many equilibria that satisfy our equilibrium conditions. In
computational problems, the choice of initial conditions for continuation values (our
{W 0(·)}) is a determinant of which equilibria the algorithm will compute.31 If the
initial conditions are higher than possible equilibrium values, then all policies are likely
to be explored. As a result, an equilibrium obtained starting with high initial values is
more likely to be boundary consistent (though a formal test for boundary consistency
is still advised).32

The cost of choosing high initial conditions is that they are likely to require many
iterations before the test for a REBE in section 3.2.2 is satisfied. So starting with lower
values is likely to lead to computed values that satisfy the conditions of a REBE with
shorter computation times. Moreover, if a particular equilibrium is desired (boundary
consistent or not), and there is prior information on the likely value functions for that
equilibrium, for example, from a computed equilibrium from a related model, more
carefully chosen initial conditions are likely to lead to the desired equilibrium values
faster.

Because we were interested in equilibria that explored all possible policies, we have
incurred the cost associated with exceptionally high initial conditions. Hence, all but
one of our computed REBEs were boundary consistent.

30The test used here is often referred to as the least favorable test statistic in the econometric literature;
see, for example, Romano, Shaikh, and Wolf (2014).

31In empirical problems one would use the data to help mitigate multiplicity issues.
32High initial conditions are also attractive in that there is a concern that low initial conditions may pre-

determine an equilibrium. For instance, the recurrent class may be forced to be small if initial conditions
are chosen such that there is no incentive to explore a certain region. Boundary consistency also prevents
this problem by evaluating whether perceptions at the boundary of a recurrent class are robust to deviating
behavior.
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4 Numerical Analysis

A parameterized version of each of the baseline (B), information-exchange (IE), and
voluntary-information-exchange (V IE) models is computed, using the computational
algorithm described above. The parameterization and the implementation of the algo-
rithm are discussed below, together with a description of the computational burden. An
equilibrium is computed for each of the three models. These equilibria are described in
section 4, together with a discussion of the economic content of these numerical results.

Parameter Values

The parameter values that are used in the numerical analysis are given in Table 1
below. Each model has two firms and four possible bids. This structure enables us to
compute an assortment of models in reasonable time (we discuss computational burdens
in the next subsection).33 Similarly, the time between forced-revelation periods in the
baseline model is four periods, a choice arrived at through balancing the desire to
have meaningful private information evolving over time with the need to keep the state
space at a manageable scale. We assume participation costs are uniformly distributed
U [0, 1]. To give some sense of scale, this means that the participation costs are between
0 and 50%, and, on average, 25% of the mean revenue generated by a harvested lot of
timber.34

Computational Burden and Updating Procedure

A REBE is computed using the algorithm provided in section 3 and the following initial
conditions:

W 0(b|Ji) = e

(
1− F + 0.5

θ + 1

)
1

1− β
+ ωi

F + 0.5

θ + 1
(32)

for all (b, Ji) combinations, and where F is the average value of Fi and is 0.5 under our
parametrization.

As noted, the initial conditions are likely much higher than equilibrium values. To
see why, note that e/(1 − β) is the discounted value of being able to sell the mean
harvest forever and e/(θ+ 1) is smaller than the periodicity with which the firm would
have to win the auction in order to have the timber needed to sell e units in every
period. So (F + 0.5)e/[(θ+ 1)(1−β)] is less than the cost of bidding in enough periods
to be able to sell e units in every period if all the auctions that the firm bid on were
won and the winning bid was the lowest bid possible. Finally, ω(F + .5)/(θ + 1) adds
back in the cost of the timber the firm has already stored.

33In an alternative specification, we restrict the set of information that firms condition on and accommodate
an additional firm. The restricted information set includes the time since the last information exchange and
the last revealed ω vectors. We find that: (i) qualitatively, restricting the information set has the same effect
on bids and participation as revealing information less frequently (moving from IE toB); and (ii) including an
additional firm intensifies competition. The online appendix (available on the authors’ webpages) describes
the details of the model, computation, and results.

34We elaborate on this assumption here. First, recall that harvesting and production costs are normalized
to zero. Second, we have also computed a model with participation cost that distribute U [0, .5], and find
that the qualitative results are unchanged.
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Table 2 provides statistics that summarize different aspects of the computational
burden we incurred in computing the equilibria. Partly as a result of our choice of
initial conditions, the number of states visited (and hence explored) in both the B
and the V IE algorithms was large: 7.5 and 7.9 million respectively. Though recurrent
classes were (less than) an order of magnitude smaller than the sets of states ever visited
(less than 330,000), there was a significant computational burden in finding them.35

Computation of the IE equilibrium was much less difficult; the number of states visited
was only 2,724 and the cardinality of the recurrent class was 2,089, reflecting the fact
that the IE model does not require the continuation values associated with every
possible different four-period history after the period of revelation.

To lessen the computational burden for the B and V IE model, we used the following
simple way of reducing the impact of the bias in the early iterations resulting from the
high initial conditions.

1. First, the computational algorithm was run for 50 million iterations, resetting the
counters for the states every 10, 000 iterations as follows:

h(Ji| iteration 10, 001) =

{
10 if h(Ji| iteration 10, 000) >= 10

h(Ji| iteration 10, 000) otherwise.

2. Then, the algorithm was run for 5 million iterations without resetting the counter.

3. Next, a run of additional 5 million iterations was used to form the test for the
REBE (recall that the test requires an R2 statistic to be greater than .999).

4. If the test passed, we stopped the algorithm. Otherwise, we repeated steps 1 to
3.

Steps 1 through 3 were repeated six times for B before the test was satisfied and
eight times for V IE. To obtain our results for the IE model, we used a similar
procedure but with shorter runs; step 1 above was run for 10 million iterations, and we
achieved convergence after only one round of our steps. The boundary-consistency test
was run, as described in section 3, after we accepted the test for the restricted EBE.36

All the equilibria we describe here are boundary consistent, though we have found one
that is not, which we do not report. We provide a summary of compution times in
the bottom half of Table 2, and the footnote to the table describes the program and
computer used for the runs.

To ensure our estimate of the recurrent class was accurate, we extended the last
5 million run by an additional 5 million and asked what fraction of the incremental
iterations visited points that had already been visited in the initial 5 million. For
the baseline, information-exchange, and voluntary-information-exchange models, the
fractions were 99.42%, 100%, and 98.9%, respectively.37

35The size of the problem illustrated here demonstrates the usefulness of having a computationally feasible
approach to deriving equilibrium (that is, one that can be implemented algorithmically on a computer). By
comparison, we are unaware of a similarly feasible computation approach that would succeed in computing
all the elements of a Markov perfect Bayesian equilibrium in this setting.

36The number of simulation runs used to determine whether a point in the recurrent class was a boundary
point was 50, and the number of repetitions to form the averages used in the test of the boundary points
was 20.

37Note also that the incremental points in the B and V IE cases are likely to be points that satisfy the
boundary-consistency conditions.
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Computational Results

Table 3 shows a summary of average per-period performance metrics for each of the B,
IE, and V IE models and for a social planner (SP ) version of the model. The social
planner observes all private information of both firms and maximizes total revenues
minus participation fees.38 If not for the existence of a non-zero minimum bid, which
distorts participation somewhat, the planner’s allocation problem would be equivalent
to that of an ideal, perfectly coordinated, cartel: the planner maximizes the discounted
value of the sum of future net cash flows.

The average bid for B, IE, and V IE is 1.09, 0.94, and 1.04, respectively. The
ordering of bids across models is the same if we look at winning bids, or winning
bids conditional on the number of bidders. So if lower prices correspond to weakened
competition, the view that information sharing (of strategic data) is akin to collusion
has some support, in that information exchange (IE and V IE) generates lower bids.

However, the statement that more information leads to softer competition is at odds
with the observed participation pattern. Participation is higher in IE than in B. Even
if we condition on at least one bidder participating, we see more participation in the
IE than the B equilibrium (1.63 vs 1.59). A common intuition would be that increased
participation indicates more competition, which should, in turn, lead to higher bids;
however, in this instance, this intuition is contradicted.

Before leaving Table 3, we note that all three models deliver (essentially) the same
social surplus (albeit with IE being the lowest by 0.01). However, the maximal social
surplus from the market equilibria, 2.73, is much lower than the social surplus attained
by the planner (3.10). The participation numbers indicate why the planner does so
much better. The planner only ever lets one firm enter the auction, thus saving on the
cost F (the planner also benefits from being able to better coordinate the path of the ω-
tuple). In the IE equilibrium, the firms generate almost the same revenue (equivalently,
output) per period as the planner, but requires much greater participation to do so,
thus generating a lower social surplus. By contrast, firms in B are less effective at
revenue generation (their stocks are not always high enough to satisfy the demand
they face), but generate less wasteful participation.

We now turn to resolving the contrasting patterns of bids and participation between
B and IE visible in Table 3: bids are higher in the B game, but participation is higher
in IE.

To explain these phenomena, we have to consider the relationship between the
different information structures and dynamic incentives. We begin with the differences
between the IE and B equilibria (the discussion of V IE is delayed until section 4).
Table 4 divides the state space by ω-tuples, and shows the probability distribution over
these ω-tuples for each of B and IE as well as the average per-period profits earned by
the firms with ω’s in the tuple. The distribution for SP is also provided for comparison.

38Specifically, the planner’s objective is to maximize revenues minus participation fees. That is, the planner
views the bid payment as a transfer between players, whereas participation payments represent real costs to
the society. As in the baseline case, each firm draws a stochastic i.i.d. participation cost from Fi ∼ U [0, 1]
in each period. After observing the realization of the participation costs, the planner chooses which firm to
assign the lot to or chooses not to assign the lot to any firm. In terms of the informational structure, we
assume that the planner has access to the Fi and ωi realizations of both firms.
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Table 4 shows that:

1. bidders in IE spend less time in (≤ 4,≤ 4) states than is the case in B; and,

2. conditional on the state, profits in IE tend to be lower than in B.

Both B and IE are dynamic games in which the control that the firm uses to change
its stock of timber is its bid. Hence, to understand how differences in information sets
shape the different paths taken through the state space, an examination of bidding is
required. The salient feature of the data in Table 4 that the bids must explain is how
the IE information structure generates bids that keep the firms in higher ω-tuples.
The lower ω-tuples, the tuples in which both firms have ω ≤ 4, are the least profitable
tuples in either equilibrium; indeed the maximal profits for a firm with ω ≤ 4 are
less than half the minimal profits with ω ≥ 4. What is evident from Table 4 is that
the additional information available to firms in the IE equilibrium enables them to
stay away from states with ω ≤ 4 with greater propensity than the firms in the B
equilibrium are able to. The fraction of periods with both firms with ω ≤ 4 is 65.5%
in B compared to 32.6% is IE, whereas the fraction of states with at least one firm
with ω ≤ 4 is just over 62% for IE compared to just over 82% for B.

By contrast, the social planner spends more time in the (≤ 4,≤ 4)-tuples than firms
in B or IE, thereby generating a smaller cost of holding the timber already procured.
So IE firms maintain ω stocks that are greater, and in that sense even less efficient,
than in the B equilibrium. Table 4 also reveals that firms in IE spend more time in
states that are asymmetric, in the sense of having one firm with a high ω and one with
a low ω.

Table 5 contains the probability distributions over bids by ω -tuples, together with
average profits in those states. These ω -tuples are the same ones examined in Table
4. Grey shaded cells indicate bids that are more frequent in IE than in B. Notice
first that when both firms have ω ≤ 4, bidding is more “aggressive” in the IE than in
the B equilibrium; we see both more participation in IE (the fraction on ∅ is lower)
and a higher fraction of bids that are higher than the minimal bid. This observation
reinforces the finding that the increased information created when moving from B to
IE is not allowing the firms in IE to better coordinate; rather, more information
actually intensifies competition when stocks of timber are low. Relative to IE, the
firms in the B model are less certain about their competitor’s states, which softens
competition.

The opposite is true when both of the firms have ω ≥ 5. In these states, conditional
on bidding, the bids in IE are smaller. The result is that the winning bid in IE is the
minimal bid much more frequently. For example, when both firms have an ω between
five and seven, the IE bidding patterns are consistent with firms participating and
bidding the minimal amount, when their Fi draw is sufficiently low. The result is that
in virtually every case the winning bid is the minimal bid. This essentially reduces
the auction to a lottery. When both firms have an ω between five and seven in the B
equilibrium, participation is somewhat lower, but conditional on participating about a
quarter of the bids are more than the minimal bid. A similar comparison holds when
both firms have an ω greater than eight.

Similarly, in the (≥ 8, 5−7)-tuple, the IE equilibrium has the high-ω firm typically
sitting out the auction, deferring to the lower-ω rival who most often wins with the
minimal bid. By contrast, when the B equilibrium is at the tuple (≥ 8, 5−7) the high-ω
firm bids 47 % of the time (compared to only 16% of the time in the IE equilibrium),
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and 15% of those bids are greater than the minimal bid (compared to 0% for the IE
equilibrium).

Thus, when both of the firms have ω ≥ 5, more information enables better coordi-
nation of participation and, consequently, bids.

One set of states in Table 5 that we have not yet discussed is when one firm has
an ω less than or equal to four and the other has an ω between five and seven. In a
sense, this set of states lies “in-between” the low-stock states in which more information
intensifies competition, and the high-stock states in which more information facilitates
coordination. In these in-between states, the high-ω firm participates more in the IE
equilibrium (67% vs. 57%), and 85% of the time that the high-ω firm participates in
the IE equilibrium it bids more than the minimum bid (compared to 68% of the time
in the B equilibrium). The low-ω firm in the (≤ 4, 5− 7) participates more in the IE
equilibrium but bids less aggressively than it does in the B equilibrium. The fact that
the high-ω firm bids more aggressively in the IE equilibrium but the low-ω firm does
not, explains part of the difference between the probabilities of different states between
the IE and B model provided in Table 4. That is, this pattern of aggressive bidding
by the high-ω firm contributes to the IE model more frequently reaching states in
which at least one firms has a high-ω stock. A similar pattern emerges in the states in
which one firm has an ω less than or equal to four and the other has an ω of eight or
more (with the only qualitative difference being a lower propensity to participate by
the high-ω type in the IE equilibrium).

Thus, Table 5 shows that

1. bidders in IE bid more aggressively when, for both firms, ω ≤ 4;

2. in IE, when both firms have ω ≥ 5, the participation decisions move the auction
closer to a form of lottery; and

3. in the remaining (asymmetric) states, in IE, the high-ω firm bids more aggres-
sively than the low-ω firm, conditional on participating.

Tables 6 and 7 examine the differences in bids between the B and IE models
in more detail. Table 6 looks at bids in the low-ω states and shows the increase in
aggressiveness that results from providing firms with the increased information in the
IE equilibrium. At state (0, 0), firms in IE participate 99% of the time (compared to
88% in B), and when they participate, 78% of the time they choose the maximal bid
(compared to 28% in B). The differences between the bids in IE and B are similar in
state (1,1). Even when some asymmetry exists in the states, for example in (2,0), as
long as both states are low, the increased information in IE causes the firm with a
higher ω to bid more aggressively in IE than in B.

Table 7 focuses on bidding behavior when states are asymmetric. The firm with
the larger stock has an ω = 7, but the pattern is representative of states with its
ω ∈ {5, 6, 7, 8, 9}. Relative to the B equilibrium, the low-ω firms in IE have a higher
propensity to bid and, when bidding, to bid the minimum bid. Moreover, those propen-
sities increase as their stock moves from 0 to 1 to 2. By contrast, at least in states (7,0),
(7,1), and (7,2), the high-ω rival either does not participate or tends to bid 1 (and so
is likely to win if it does bid). As the low-ω firm’s stock increases, the high-ω firm
participates less, making the low-ω firm more likely to win and win with the minimal
bid. This ensures that both firms’ profits increase as the low-ω firm’s stock increases.

In the IE equilibrium, this pattern of play shifts as the low-ω firm passes ω=4.
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Then, the high-ω firm (if it bids) moves its bids toward the minimal bid. The behavior
in the B equilibrium in these cases is quite different. Participation and bids conditional
on participation are higher, making the relative profitability of those states (relative
to the low-ω states) lower in the B than in the IE equilibrium.

Tables 6 and 7 show how increasing a firm’s information about its competitor
changes the path of play. Although providing more information about a competitor
increases competition and lowers profits at low-ω states, participation is higher in the
game with more information. The reason is that an increase in information at low-ω
states intensifies the competition over future profits in high-ω states. Consider two
firms initially at low-ω states. Compared to the B equilibrium, the losing firm in the
IE equilibrium has more information about the competitor’s stock after winning, and
thus the likelihood that the competitor will participate in the following auction. Based
on this information, the firm can better assess whether it is likely to win subsequent
auctions with a minimal bid, and bid accordingly. Though this fact certainly does
not dull the incentive to bid aggressively when both stocks are low, it does ameliorate
the consequences of initial losses and support an equilibrium where both firms are at
high-ω (and hence highly profitable) states more often.39

More generally, the reduction in asymmetric information, caused by moving from
B to IE, intensifies competition in low-ω-tuples (causing a reduction in profits in those
states), but mitigates competition in high-ω states (in the sense of making coordinating
participation easier). The result is an environment in which firms invest in maintain-
ing higher ω stocks, and thus spend more time in parts of the state space in which
competition is less intense.

The Model with Static Incentives (i.e. β = 0)

Note that when we set β = 0, the firms still use the prior history as signals on the likely
current stock of timber held by their competitors. However, they now bid to maximize
current profits with no interest in investing for future use. The striking implication of
the computational results in Table 8 is that in the absence of an incentive to invest in
the future, whether or not firms share information has little impact on their behavior.
That is, when β = 0, the outcomes generated by B and IE are not diffferent in any
economically meaningful way. This finding confirms that the primary impact of the
additional information in the IE equilibrium is to enable the firms to plan for the
future, and this, in turn, changes the equilibrium distribution of states40.

Voluntary Information Exchange (V IE)

In the V IE model, firms can elect to share information every 4 periods. If both firms
elect to share information, then the model switches, for the next four periods, from the

39This finding resembles the intuition provided in Jofre-Bonet and Pesendorfer (2003) in which low-
inventory (unconstrained) firms may bid less aggressively in the presence of a competitor with medium
inventory, allowing the competitor with medium inventory to win. This allows the low-inventory firm to face
a high-inventory competitor in the future, which effectively gives monopoly power to the low-inventory firm.
It is easier to settle on such a pattern of play when inventory levels are relatively transparent to bidders.
Hence, this pattern in more apparent in the IE case than in the baseline.

40We have also computed for β ∈ [.25, .5, .8]. As we increase β the difference between the IE and B
equilibria in the rows of tables analogous to Table 8 grows.
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B to the IE setting.41

Table 9 indicates that despite the fact that average profits in IE are larger than
average profits in B, firms in V IE only choose to share information in 5% of the states
where that choice is made (though one of the two firms chooses to share in 24% of
those states). As a result, when we calculate the prior tables, we find little difference
between B and V IE. This finding raises the question of why firms in V IE cannot
reliably coordinate on sharing information; after all, doing so appears to be in their
long-term interest.

Table 9 shows that the propensity to share information is substantial only when
both ω’s are greater than four, and the highest is greater than eight. As the default is
B, in V IE these states occur relatively rarely, hence the low frequency of choosing to
share information. Recall that profits are higher in the B equilibrium. As a result, to
enjoy the benefit of switching to the IE equilibrium, the firm has to forsake profits in
an intermediate period.

This tradeoff comes out clearly in the comparison presented in Table 10. It reports,
for IE, the average of EFi [V (Ji, Fi) |τ = 1] by the underlying state’s ωi , weighted by
the relative frequency with which a state is visited. It also reports the same expectation
for an alternate scenario in which optimal policies from the B model are followed (from
the same initial state) for four periods, and then, for all subsequent states, IE-optimal
policies are followed. Comparing the two expected valuations indicates the value of
switching from no-information sharing directly to information sharing versus waiting
four periods and then shifting to information sharing. The last column reports the
probability of the value for IE being larger than the calculation with four periods of
waiting in the simulated data. This probability indicates the fraction of times when
any losses in the interim four periods of information exchange are worth less than any
gains from information sharing in subsequent periods.

Tables 9 and 10 show the difficulty that the collective of firms have in maintaining in-
formation sharing, despite its long-term benefits. This finding suggests the importance
of commitment devices in establishing an effective information-sharing arrangement.
In IE, perfect commitment is externally imposed. In V IE, firms are able to commit
for only four periods at a time, and this is sufficient to break down information sharing.

5 Conclusion

This article illustrates how the experience-based equilibrium concept facilitates inves-
tigation of the dynamics of complex auction environments. It also extends this equi-
librium concept through a boundary-consistency requirement which mitigates the the
problem of multiplicity that can be generated by the conditions of experience-based
equilibrium.

Our application shows that allowing for the dynamics implicit in many auction
environments is important in that it enables the emergence of equilibrium states that
can only be reached when firms are responding to dynamic incentives. It also shows
that the impact of information sharing can depend crucially on the extent of dynamics,
and suggests that treating information sharing, even of strategically important data, as

41If one or both firms choose not to share, then firms spend the next four periods in the B setting. For
more detail on V IE, refer back to section 2.
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a per se offense (in the case of the U.S.) or as a restriction of competition by object (in
the case of the EU), needs to be weighed against the possibility of type 1 error, falsely
rejecting the hypothesis that conduct is welfare neutral (or even welfare enhancing).
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A Appendix: The mechanics of REBE in a sim-

ple example

We begin with an informal statement of a REBE (see section 2 for a more formal
statement). A REBE consists of

C1 A set R that is a subset of the state space: R contains all states that can possibly
be reached given equilibrium play.

C2 A set of strategies, one for each player, such that at every state in which a player
can take an action, the action that the player takes is optimal, conditional on the
W ’s attached to each possible action at that state.

C3 A number, denoted by W , corresponding to each possible action at each state.
For states in R, W ’s are equivalent to the sum of the period payoff and the
discounted, probability-weighted, continuation value of play from the states that
may be reached in the next period.42

Example 1: Comparing MPBE and REBE

The extensive form of a stage game is shown in Figure 1. We consider an infinitely
repeated version of this game (although we consider the perfect Bayesian equilibrium
of the stage game as a first step). The game in Figure 1 differs conceptually from the
game considered in this article and in Fershtman and Pakes (2012) in that it has an
alternating move structure in the stage game. (This example is adapted from Gibbons
(1992)).43

In the stage game in Figure 1, player 1 begins by choosing an action from {L,M,R}.
If player 1 chooses either L or M , player 2 finds itself at information set 2a and must
choose an action from {L′, R′} without knowing the nature of player 1’s proceeding
choice. If player 1 chooses R, then player 2 finds itself at information set 2b (a singleton)
and must choose an action from {L′′, R′′}.44

A perfect Bayesian equilibrium in this game is for player 1 to play L, for player 2 to
play L′ at information set 2a supported by a belief that player 1 played L conditional on
being at information set 2a, denoted by Pr(L|2a) such that Pr(L|2a) = 1, and for player
2 to play R′′ at information set 2b. This is summarized as < L,L′,Pr(L|2a) = 1, R′′ >.

For ease of exposition, we restrict the discussion to pure-strategy perfect Bayesian
equilibria. This game has two: < L,L′,Pr(L|2a) = 1, R′′ >, and < R,R′,Pr(L|2a) ≤
0.5, R′′ >.

Now consider an infinitely repeated version of this game, such that Figure 1, is
the stage game. The repeated game works by transitioning back to player 1’s move
following any terminal node in the stage game, and assumes that β is the common dis-
count rate. In this repeated game, consider the pure-strategy Markov perfect Bayesian
equilibria (MPBE). The Markov restriction limits the state space to pay-off, and infor-
mationally, relevant states, which in this simple setting is just the information set in

42The continuation value achieved from a state is the highest W attached to the actions that can be taken at
that state. That is, for state Ji, the continuation value from Ji, denoted V (Ji), is V (Ji) = maxa∈AJi

W (a|Ji),
where AJi is the set of actions that can be taken at state Ji. See equations 2 and 6.

43The adaptation is from p.176 of Gibbons.
44Node 2b is added is allow a state to lie outside the recurrent class in a REBE.
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the stage game that each player finds himself at.45 Given this simple state space, the
pure-strategy MPBE mirror those in the one shot game: < L,L′,Pr(L|2a) = 1, R′′ >,
and < R,R′,Pr(L|2a) ≤ 0.5, R′′ >.

In this repeated game, it is possible to consider what a REBE would constitute.
The infinite repetition allows the empirical distributions, central to the definition of a
REBE, to be well defined.
Example 1.1: The following is a REBE:

1. A subset of the state space R ⊂ S ≡ {1, 2a, 2b} such that R ≡ {1, 2a}.
2. A set of strategies such that player 1 plays L and player 2 plays L′ at 2a and R′′

at 2b.

3. A set of numbers having an interpretation as the firm’s perceptions of the expected
discounted values of current and future cash flows conditional on its information
set (equivalently, the state) and action. That is,

W ≡ {W (L|1),W (M |1),W (R|1),W (L′|2a),W (R′|2a),W (L′′|2b),W (R′′|2b)}.
(33)

Because each terminal node in the stage game transfers to the same point in
the stage game for the next period, the future cash flows are the same for every
element of W. Denote the discounted value of these cash flows for each player by
βVi. Thus, consider the following values:

(a) W (L|1) = 2 + βV1

(b) W (M |1) = 0 + βV1
...

such that W = {2, 0, 1, 1, 0, 0, 3}+ βV.46

One can easily check that given the above valuesW the above strategies are optimal,
R is indeed the recurrent class, and that the consistency condition C3. is satisfied. For
illustration, W (R|1) = 1 + βV1 because, if player 1 plays R, then player 2 plays R′′

(see the definition of the equilibrium strategies). This leads to a period payoff of 1 for
player 1. The game then transitions to a new period, starting at node 1, and player 1
gets the discounted continuation value from this state (equaling βV1).

In this example, W (L′′|2b) = 0 +βV2 and W (R′′|2b) = 3 +βV2. These numbers are
actually arbitrary. Because node 2b is not in the recurrent class, the only constraint
on W (L′′|2b) and W (R′′|2b) comes from needing to provide a pattern of play in the
current period such that if player 1 plays R, the period payoff is 1 (we need that
W (R|1) = 1+βV1). This minor restriction, which is solely an artifact of the stage game
having an alternating move structure, is all that constrains W (L′′|2b) and W (R′′|2b).
Indeed, any numbers such that W (L′′|2b) ≤ W (R′′|2b) would work perfectly well.47

45Note that this very simple structure means that a full-revelation period is not needed in this (and the
next) example - the Markov restriction is sufficient to keep the state space finite. This is true for any game
that returns to a particular point in finite time with probability 1.

46V = {V1, V1, V1, V2, V2, V2, V2}
47Formally, this would give rise to multiplicity of equilibria, but no change in the pattern of play. Similarly

if W (L′′|2b) > W (R′′|2b) then all that would change is that the strategies would have to be redefined such
that player 2 plays L′′ at 2b and W (R|1) would have to be changed so that W (R|1) = 0 (or else condition
C3 would be violated). This would be a distinct REBE, but again the path of equilibrium play would be
unchanged.
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Note that not for the alternating move structure, even this minimal restriction would
be absent.

Unsurprisingly, as in an MPBE, other patterns of play can be supported by a REBE.
For instance, the following is also a REBE

Example 1.2:

1. R ≡ {1, 2b}.
2. Player 1 plays R and player 2 plays R′ at 2a and R′′ at 2b.

3. W = {0, 0, 1, 0, 1, 0, 3}+ βV.

Here, W (L′|2a) = 0+βV2 and W (R′|2a) = 1+βV2. This makes playing R′ optimal
for player 2 at 2a, but because 2a is outside the recurrent class, there is no discipline
on these numbers. By contrast, W (L|1) and W (M |1) are consistent with what would
happen were player 1 to play L or M , and player 2 played according to its equilibrium
strategy. This satisfies consistency (C3).48

Example 2

The purpose of this second example is to provide yet another example of REBE and
also to demonstrate the mechanics of boundary consistency. Consider the following
extensive form game, which comprises two possible subgames.

The following is a REBE:

Example 2.1:

1. A subset of the state space R ⊂ S ≡ {1a, 1b, 2a, 2b} such that R ≡ {1a, 2a}.
2. A set of strategies such that player 1 plays L at node 1a, and player 2 plays L′

at 2a. Player 1 plays U at node 1b and player 2 plays U ′ at 2b.

3. A set of numbers having an interpretation as the firm’s perceptions of the expected
discounted values of current and future cash flows conditional on its information
set and action. That is

W ≡ {W (L|1a),W (R|1a),W (L′|2a),W (R′|2a);W (U |1b),W (D|1b),W (U ′|2b),W (D′|2b)}.

As each of the terminal nodes in each stage game transitions to node 1a eventually,
it is useful to denote the continuation value for each player at 1a by βVi. Let W
be such that (with commentary added explaining the values for player 1):

(a) W (L|1a) = 2 + βV1: In stage game A, player 2 plays L′, so if player 1 plays
L, then player 1 gets a payoff of 2 in the stage game. The game then transi-
tions to the new period, and stage game A is played again. The discounted
continuation value of the subsequent play is βV1. Hence, W (L|1a) = 2 +βV1
and condition C3 is satisfied.

48Note that V in examples 1.1 and 1.2 are different because the pattern of play is different.
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(b) W (R|1a) = β: In stage game A, player 2 plays L′, so if player 1 plays R then
player 1 gets a payoff of 0 that period. The game then transitions to the new
period, and stage game B is played. The continuation value from this point
is the maximum of W (U |1b) = 1 and W (D|1b) = 0 (see below, for where
these values come from). Hence, the continuation value is equal to 1, which
when discounted yields β. Hence, W (R|1a) = 0 + β = β and condition C3 is
satisfied.

(c) W (L′|2a) = 2 + βV2.

(d) W (R′|2a) = βV2.

(e) W (U |1b) = 1: Because node 1b is outside the recurrent class, this number
does not need to satisfy condition C3. This leaves it unconstrained, provided
that it remains the case that W (R|1a) < W (L|1a). (Recall that, to satisfy
condition C3, W (R|1a) must be consistent with a period profit of 0 and
the discounted continuation value generated by transitioning to stage game
B. This continuation value is determined by max{W (U |1b),W (D|1b)} =
W (U |1b)). Any numbers such that max{W (U |1b),W (D|1b)} = W (U |1b) ≤
(2 + βV1)/β would suffice.

(f) W (D|1b) = 0: This is arbitrary. See commentary on W (U |1b) above.

(g) W (U ′|2b) = 2 + βV2.

(h) W (D′|2b) = βV2.

The pattern of play in this game is to stay in subgame 1 indefinitely, with player
1 playing L and player 2 playing L′. The key to supporting this REBE is that
W (R|1a) = β < W (L|1a), which means that L is the optimal action for player 1
at node 1a. W (R|1a) = β satisfies C3 (the consistency condition) because W (U |1b) =
1 > W (D|1b). Hence, both the period profit from playing R at 1b is zero, and the
continuation value from reaching 1b (given by W (U |1b)) is 1. So, C3 is satisfied.
W (U |1b), which is outside the recurrent class, does not have to satisfy C3, which is
why W (U |1b) = 1 is possible. Note that W (D|1b), W (U ′|2b), and W (D′|2b) can also
be arbitrary, as the nodes are outside the recurrent class. The commentary in the
statement of the equilibrium above goes through this more slowly.

This pattern of play (always staying in stage game A) is counterintuitive for high
enough β. Stage game A can be solved by iteration of dominated strategies - U,U ′ is
a compelling pattern of play - and one would think that (for high β) player 1 would
want to cycle through stage game B as often as possible to collect the period payoff of
10.

This REBE fails boundary consistency, for a high enough β. The reason is that, if
player 1 were to play R at 1a, the discounted cash flows that would result can be higher
than W (L|1a). To see this, note that playing R at 1a would result in a period payoff
of 0, and then player 1 would next choose an action at 1b. At 1b, the policy played by
player 1 is U , and player 2 plays U ′, resulting in a payoff of 10 for player 1. Following
that, the game transitions back to stage game A. This means that the discounted payoff
from playing R at 1a is 0+10β+β2V1, which is greater than W (L|1a) = 2+βV1 if β is
high enough (close to 1). Thus, boundary consistency can be violated by this REBE.

Boundary consistency eliminates example 2.1, but does not eliminate all REBE
supporting this unattractive pattern of play. For instance,

Example 2.2:
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1. A subset of the state space R ⊂ S ≡ {1a, 1b, 2a, 2b} such that R ≡ {1a, 2a}.
2. A set of strategies such that player 1 plays L at node 1a, and player 2 plays L′

at 2a. Player 1 plays D at node 1b and player 2 plays U ′ at 2b.

3. W ≡ {W (L|1a),W (R|1a),W (L′|2a),W (R′|2a);W (U |1b),W (D|1b),W (U ′|2b),W (D′|2b)
≡ {2 + βV1, β

2V1, 2 + βV2, 2β + β2V2;−1, 0, 2 + βV2, βV2}.

This example of a REBE satisfies boundary consistency, but still supports the path
of play L,L′. The reason is that W (D|1b) is now greater than W (U |1b), resulting in D
being the action played at 1b (recall that boundary consistency restricts W (R|1a) but
not the W ’s attached to points outside the recurrent class, like W (D|1b)). This means
that W (R|1a) remains less than W (L|1a) when the discounted cash flows resulting
from playing R at 1a are computed.

To eliminate this equilibrium, the boundary-consistency condition would have to
be extended to actions at points one step away from the boundary.

B Appendix: Testing for REBE

In this appendix, we discuss the testing for REBE and the boundary consistency for
the baseline case. Analogous procedures are used for the IE and V IE cases.

Notation and Memory. Iterations of the test will be denoted by l (in contrast to
the k notations for iterations of the algorithm for computing policies). At each iteration
there will be two information sets, one for each firm, so sl ≡ (J1,l, J2,l). In memory, we

have particular values of
(
{W (b|Ji)}b∈B,W (0|Ji)}

)
, or

(
{W ∗(b|Ji)}b∈B,W ∗(0|Ji)}

)
,

for all Ji with positive counters (h∗(Ji) > 0), and our goal is to determine whether
these values satisfy the conditions of a REBE.

At each point visited during the simulation run, we draw an Fi for each firm and
calculate

V (Ji, Fi) = max{max
b

(W ∗(b|Ji)− Fi),W ∗(0|Ji)}. (34)

The argmax of this equation for each firm will be denoted with a star. Together with
the random draws that determine the quantity of timber in the newly acquired lot
and those determining the harvest, these policies generate the next state. However,
because we are calculating a REBE, we need to simulate the continuation values for
all possible policies, that is, for b ∈ B ∪ ∅.

That is, at iteration l, we calculate the simulated continuation values for firm i and
policy b as

SCV l(b|J li ) = πi(bi, b
∗,l
−i, ω

l
i, ε

l
i, η

l
i) + βV ∗

(
J l+1
i

(
J li , bi, b

∗,l
−i, ω

l
i, ε

l
i, η

l
i

)
, F l+1

i

)
. (35)

We also calculate SCV l(b|J lI)2. We then update our memory for that point, which
consists of; an average of the simulated continuation values, an average of the square
of the simulated values, and the counter for the number of times we have visited that
point.
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Say we stop the simulation routine at a particular l = l. At that point, we have in
memory an average of the estimated simulation value for each possible policy at each
point visited more than once,

µl(b|Ji) ≡
∑l

l=1 SCV
l(b|Ji){Ji = J li}
hl(Ji)

, (36)

and can calculate an unbiased estimate of the variance of the simulated continuation
values for each policy at every point,

σ̂2
l
(b|Ji) ≡

∑l
l=1 SCV

l(b|Ji)2{Ji = J li}
hl(Ji)− 1

−
µl(b|Ji)

2hl(Ji)

hl(Ji)− 1
. (37)

Omitting the index l for notational convenience and letting #B be the cardinality
of the set B plus one (for choosing not to enter), we note that the percentage means
square error of our estimates at W ∗(Ji) or

MSE
( µ(Ji)

W ∗(Ji)

)
≡ 1

#B

∑
b∈B∪∅

(
µ(b|Ji)−W ∗(b|Ji)

W ∗(b|Ji)

)2

= Bias2
(µ(Ji|W ∗)

W ∗

)
+V ar

(µ(Ji)

W ∗

)
(38)

where if E(·) takes expectations over the simulated draws,

Bias2
(
µ(Ji)|W ∗

)
≡ 1

#B

∑
b∈B∪∅

(
E[µ(b|Ji)]−W ∗(b|Ji)

)2

(39)

and

V ar
(
µ(Ji)

)
≡ 1

#B

∑
b∈B∪∅

σ2(b|Ji) =
1

#B

∑
b∈B∪∅

(
E[µ(b|Ji)]− µ(b|Ji)

)2

. (40)

Our test statistic, labeled Υ, converges to an L2(Pns|W ∗) norm in the percentage
bias of the our estimates of W ∗, where Pns is the empirical measure of the number
of times each Ji is visited in the simulation run (this will converge to L2(PR|W ∗),
the invariant measure of a recurrent class generated by W ∗). To obtain a consistent
estimate of Υ, we note that

∑
Ji

(
1

#B

∑
b∈B∪∅

σ̂2
l
(b|Ji)− V ar(µ(Ji))

)
pns(Ji)→a.s. 0, (41)

so that

Υ ≡
∑
Ji

(
MSE

(
µ(Ji)

)
−
( 1

#B

∑
b∈B∪∅

σ̂2
l
(b|Ji)

))
pns(Ji)→a.s.

∑
Ji

Bias2
(
µ(Ji)|W ∗

)
pns(Ji).♠

(42)
We accept the test when Υ ≤ .001.
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Table 1: Parameter specifications

B IE V IE
Parameters:

Periods between ω revelation T 4 1 {1,4}

Common Parameters:

Distribution of fixed cost of participation Fi U[0,1]
Discount factor β 0.9

Mean timber in a lot θ 3.5
Disturbance around θ η {-0.5,0.5}
Probability on η realizations {0.5,0.5}

Mean harvest capacity e 2
Disturbance around e ε {-1,0,1}
Probability on ε realizations {0.33,0.33,0.33}

Bidding grid {0.5,1,1.5,2}
Number of firms/bidders 2
Retail price of a unit of timber 1

Table 2: Computational details

Size of recurrent class:
B IE V IE

325,843 2,081 328,692

Number of all states visited during computation:
B IE V IE

7,495,307 2,724 7,908,122

Computation times per 5 million iterations (in hours):
B IE V IE

1:38 1:06 1:56
Computation times for testing for a REBE (5 million iterations, in hours):

B IE V IE
1:43 1:09 2:00

Computation times for testing for boundary consistency (100,000 iterations, in hours):
B IE V IE

3:03 0:16 75:41

Notes: Computation was conducted in MATLAB version R2013a using (a Dell Precision T3610 desktop

with) a 3.7 GHz Intel Xeon processor and 16GB RAM on Windows 7 Professional. A round of computation

includes steps 1 and 2 of the computational procedure given above. It is 55 million iterations for B and V IE

and 15 million iterations for IE.
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Table 3: Summary statistics, in per-period terms, by model

B IE V IE SP
Avg. bid 1.09 0.94 1.04 -
Avg. winning bid (revenue for the auctioneer) 1.11 0.98 1.07 -
Avg. winning bid with ≥ 1 firm participating 1.16 0.98 1.12 -
Avg. winning bid with 1 firm participating 1.06 0.67 0.99 -
Avg. winning bid with 2 firms participating 1.23 1.16 1.20 -
Avg. # of participants 1.52 1.63 1.52 1
Avg. # of participants with ≥ 1 firm participating 1.59 1.63 1.59 1
Avg. participation rate 0.76 0.81 0.76 0.50
% of periods with no participation 4.39 0.15 3.85 0.004
Avg. total revenue 3.35 3.49 3.37 3.50
Avg. profit 0.81 0.87 0.84 -
% of periods; lowest omega wins 66.37 60.80 65.32 85.96
Average total social surplus 2.73 2.72 2.74 3.10

Notes: Here, and in Tables 4, 5, 6, and 7, the per-period profit is defined as π(ωi) − I{i=i∗}bi − {bi 6=
∅}Fi = min

{
ωi + I{i=i∗}(θ + η), e+ εi

}
− I{i=i∗}bi − {bi 6= ∅}Fi. Total revenue is defined as

∑
i π(ωi) =∑

i min
{
ωi + I{i=i∗}(θ + η), e+ εi

}
. Total social surplus is defined as

∑
i {π(ωi)− {bi 6= ∅}Fi}. Averages

are taken over periods. The statistics are computed based on a 5-million-iteration simulation of each model.

Table 4: Probability Distribution by ω-tuple for B, IE, and SP

Prob. Dist. (%) Profit
(ωi, ω−i) B IE SP B IE

(≤ 4,≤ 4) 65.51 32.59 90.12 0.68 0.52
(≤ 4, 5− 7) 12.61 19.09 4.52 0.57 0.58
(≤ 4,≥ 8) 4.05 10.55 0.28 0.60 0.59

(5− 7,≤ 4) 12.61 19.09 4.52 1.51 1.26
(5− 7, 5− 7) 0.88 5.72 0.22 1.49 1.46
(5− 7,≥ 8) 0.14 1.12 0.02 1.49 1.13

(≥ 8,≤ 4) 4.05 10.55 0.28 1.62 1.58
(≥ 8, 5− 7) 0.14 1.12 0.02 1.66 1.87
(≥ 8,≥ 8) 0.01 0.17 0.00 1.72 1.56

Notes: This table shows the probability of intervals of ω-tuples for B, IE, and SP . Here, and in Tables 5, 6,

7, and 9, the per-period profit is a probability-weighted average, over the states underlying each ω-tuple.
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Table 5: Bids by ω-tuple for B and IE

Bids Profit
(ωi, ω−i) B IE B IE

∅ 0.5 1 1.5 2 ∅ 0.5 1 1.5 2
(≤ 4,≤ 4) 0.22 0.13 0.27 0.31 0.07 0.07 0.13 0.28 0.47 0.06 0.68 0.52
(≤ 4, 5− 7) 0.11 0.32 0.45 0.11 0.02 0.02 0.53 0.37 0.08 0.00 0.57 0.58
(≤ 4,≥ 8) 0.08 0.58 0.29 0.04 0.02 0.00 0.88 0.12 0.00 0.00 0.60 0.59

(5− 7,≤ 4) 0.43 0.18 0.34 0.04 0.01 0.33 0.10 0.52 0.05 0.00 1.51 1.26
(5− 7, 5− 7) 0.37 0.50 0.09 0.02 0.01 0.40 0.59 0.01 0.00 0.00 1.49 1.46
(5− 7,≥ 8) 0.39 0.53 0.06 0.01 0.01 0.11 0.89 0.00 0.00 0.00 1.49 1.13

(≥ 8,≤ 4) 0.51 0.25 0.22 0.02 0.00 0.60 0.14 0.26 0.00 0.00 1.62 1.58
(≥ 8, 5− 7) 0.53 0.39 0.06 0.01 0.00 0.84 0.16 0.00 0.00 0.00 1.66 1.87
(≥ 8,≥ 8) 0.61 0.36 0.03 0.00 0.00 0.47 0.53 0.00 0.00 0.00 1.72 1.56

Notes: This table shows the probability of bids by intervals of ω-tuples for B and IE. ∅ indicates non-

participation.

Table 6: Competition in low ω-tuples

.

Prob. Dist. (%) Bids Profit
(ωi, ω−i) B IE B IE B IE

∅ .5 1 1.5 2 ∅ .5 1 1.5 2
(0, 0) 3.17 .50 .12 .07 .12 .41 .28 .01 .00 .09 .12 .78 -.22 -.48
(0, 1) 3.70 .88 .12 .08 .13 .46 .20 .04 .00 .09 .44 .43 -.17 -.44
(0, 2) 4.91 1.48 .11 .09 .17 .49 .15 .05 .08 .05 .60 .23 -.09 -.31

(1, 0) 3.70 .88 .18 .06 .13 .49 .15 .01 .04 .00 .29 .66 .41 -.08
(1, 1) 2.36 .80 .18 .12 .23 .40 .07 .03 .09 .00 .74 .15 .46 .20

(2, 0) 4.91 1.48 .28 .07 .19 .41 .05 .05 .10 .00 .86 .00 1.01 .66

Notes: This table shows the probability of selected ω-tuples and bids by those ω-tuples for B and IE. ∅
indicates non-participation.
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Table 7: Bidding and participation in asymmetric ω-tuples

Prob. Dist. (%) Bids Profit
(ωi, ω−i) B IE B IE B IE

∅ .5 1 1.5 2 ∅ .5 1 1.5 2
(0, 7) 1.49 2.36 .05 .23 .61 .09 .03 .01 .33 .62 .03 .00 .22 .02
(1, 7) .40 .83 .08 .50 .38 .03 .01 .00 .79 .21 .00 .00 .69 .64
(2, 7) .35 .89 .14 .64 0.18 0.02 0.01 0.00 1.00 0.00 0.00 0.00 1.06 1.07
(4, 7) 0.13 0.69 0.26 0.61 0.10 0.02 0.02 0.04 0.96 0.00 0.00 0.00 1.36 1.09

(7, 0) 1.49 2.36 0.46 0.10 0.41 0.03 0.01 0.26 0.00 0.74 0.00 0.00 1.55 1.17
(7, 1) 0.40 0.83 0.48 0.23 0.26 0.02 0.00 0.40 0.03 0.57 0.00 0.00 1.57 1.21
(7, 2) 0.35 0.89 0.48 0.29 0.21 0.02 0.00 0.50 0.11 0.39 0.00 0.00 1.57 1.39
(7, 4) 0.13 0.69 0.46 0.43 0.09 0.02 0.01 0.76 0.24 0.00 0.00 0.00 1.59 1.84
(7, 7) 0.02 0.26 0.45 0.47 0.06 0.01 0.00 0.47 0.53 0.00 0.00 0.00 1.61 1.49

Notes: This table shows the probability of selected ω-tuples and bids by those ω-tuples for B and IE. ∅
indicates non-participation.

Table 8: β = .9 versus β = 0.

β = 0.9 β = 0
B IE B IE

Avg. bid 1.09 0.94 0.61 0.59
Avg. winning bid (revenue for the auctioneer) 1.11 0.98 0.54 0.53
Avg. winning bid conditional on ≥ 1 firm participating 1.16 0.98 0.62 0.60
Avg. winning bid conditional on 1 firm participating 1.06 0.67 0.55 0.53
Avg. winning bid conditional on 2 firms participating 1.23 1.16 0.82 0.82
Avg. # of participants 1.52 1.63 1.10 1.10
Avg. # of participants conditional on ≥ one firm participating 1.59 1.63 1.25 1.25
Avg. participation rate 0.76 0.81 0.55 0.55
% of periods with no participation 4.39 0.15 11.98 11.65
Avg. total revenue 3.35 3.49 3.08 3.09
Avg. profit 0.81 0.87 1.03 1.04
% of periods; lowest omega wins
Average total social surplus 2.73 2.72 2.60 2.61
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Table 9: Individual firm’s choices to reveal by ω-tuple

Prob. Dist. (%) Pr(∪iψi ≥ 1) Pr(Πiψi = 1) Profit
(ωi, ω−i) V IE V IE B IE

(≤ 4,≤ 4) 62.98 24.75 4.76 0.68 0.52
(≤ 4, 5− 7) 13.17 24.57 4.47 0.57 0.58
(≤ 4,≥ 8) 4.58 28.06 6.09 0.60 0.59

(5− 7,≤ 4) 13.17 21.38 4.47 1.51 1.26
(5− 7, 5− 7) 1.13 18.94 4.59 1.49 1.46
(5− 7,≥ 8) 0.19 24.38 9.73 1.49 1.13

(≥ 8,≤ 4) 4.58 23.39 6.09 1.62 1.58
(≥ 8, 5− 7) 0.19 24.60 9.73 1.66 1.87
(≥ 8,≥ 8) 0.02 38.14 20.34 1.72 1.56

Notes: ψi ∈ {0, 1}, ψi = 1 indicates that firm i chose to reveal, so ∪iψi ≥ 1 indicates that at least one firm

chose to reveal, and Πiψi = 1 indicates both firms chose to reveal. Only periods in which firms decide on

information sharing (or periods with τ = 0) are used in the calculation.

Table 10: EFi [V (Ji, Fi) |τ = 1] by ωi

ωi Number of states IE B for 4 periods, then IE Probability of
(A) (B) (A) ≥ (B)

0 146 6.22 6.34 22.92
1 120 6.89 7.01 32.57
2 131 7.72 7.79 36.47
3 136 8.54 8.58 29.87

4 127 9.35 9.30 63.57
5 120 10.10 10.02 44.79
6 113 10.87 10.70 75.12
7 94 11.60 11.37 87.34
8 87 12.27 11.98 90.58
9 75 12.86 12.52 94.66
10 63 13.40 13.02 99.93
11+ 186 14.25 13.88 99.53

Notes: This table shows, for IE, the average of EFi [V (Ji, Fi) |τ = 1] by the underlying state’s ωi, weighted

by the relative frequency with which a state is visited during a 1-million-iteration simulation of the B model.

It then replaces the first four periods of IE by B (and the IE continuation from the resulting end state) to

form the same computation for “B for 4 periods, then IE.” States are selected by taking all τ = 1 states

visited during a 1 million iteration simulation of the B model. The number of states is the count of distinct

states. The probability of (A) ≥ (B) is the percent of times with (A) ≥ (B) during a 1-million-iteration

simulation of the B model.
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Figure 1: The stage game Example 1
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Figure 2: The stage games of Example 2
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