
Patent Auctions and Bidding Coalitions:
Structuring the Sale of Club Goods

John Asker∗ Mariagiovanna Baccara† SangMok Lee ‡§

March 17, 2021

Abstract

Auctioneers of patents are observed to allow joint bidding by coalitions of buyers.
These auctions are distinguished by the good for sale being non-rivalrous, but still exclud-
able, in consumption–that is, they auctions of club goods. This affects how coalitional
bidding impacts auction performance. We study the implications of coalitions of bidders
on second-price (or equivalently, ascending-price) auctions. Although the formation of
coalitions can benefit the seller, we show that stable coalition profiles tend to consist
of excessively large coalitions, to the detriment of both auction revenue and social wel-
fare. Limiting the permitted coalition size increases efficiency and confers benefits on the
seller. Lastly, we compare the revenues generated by patent auctions and multi-license
auctions, and we find that the latter are superior in a large class of environments.
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1 Introduction

On June 27th, 2011 an auction began in which the patent portfolio of Nortel was put up for

sale as part of its bankruptcy proceedings.1 The auction used an ascending-price mechanism,

and it proceeded in rounds, with each bidder being required to outbid the leading bid in each

round to retain eligibility in subsequent rounds. The initial bid of $900 million dollars from

Ranger (a subsidiary of Google) was followed by over 19 rounds of bidding, culminating in

a winning bid of 4.5 billion dollars on June 30th, 2011.2 When the Nortel auction began,

it had five bidders: Ranger, Apple, Intel, Norpax (an affiliate of RPX Corporation, which

is an membership-based aggregator including over 320 firms as of 2020), and Rockstar (a

consortium of Research in Motion, EMC, Ericsson, Sony, and Microsoft).3 Importantly, both

at the beginning and during the course of the auction, the seller explicitly accommodated the

presence of bidding coalitions.4

This article studies the incentives for coalitions, like those observed in the Nortel auction,

to form in patent auctions. It then examines the impact that bidding coalitions have on

auction revenues and market efficiency. It also identifies measures that sellers may implement

so as to mitigate any adverse impact that such coalitions have on the ultimate sale price.

Because of their relevance in practice, as well as their analytical tractability, we study these

issues in the context of second-price auctions (or equivalently, ascending-price auctions).5

Central to the analytical approach are two attributes of intellectual property (IP), and

patents in particular: First, patents are ‘non-rivalrous,’ in the sense that they can be pro-

1This account of the Nortel auction follows the report of Ernst & Young (2011).
2This result was described in subsequent court hearings as ‘record breaking ... in the patent industry

generally’ (see Brickley, 2011).
3Norpax dropped out in round two. Rockstar did not submit a bid in round five, resulting in a loss of

eligibility. However, Rockstar regained eligibility in the same round after joining forces with Apple, with
consent of the seller. Intel dropped out in round six. At the end of round six, two eligible bidders remained
– Ranger and the reconstituted Rockstar. The seller at this point gave consent to Ranger and Rockstar to
enter into partnership discussions with Intel and Norpax. After round eight, Ranger and Intel entered into
a bidding partnership, with Ranger as the lead partner. In subsequent rounds, competition between Ranger
and Rockstar drove the price of the Nortel patent portfolio up to the final price.

4The Nortel auction is a prominent example of the distinctive presence of bidding coalitions in patent auc-
tions. Although data on the patent market is limited (a consequence of the decentralized nature of the market),
industry sources report RPX and AST (another membership-based aggregator) as the largest purchasers of
patents in the U.S. in 2017 (see Richardson et al., 2018).

5Ascending-price mechanisms similar to the ones used in the Nortel auction have been used extensively
across industries, as documented for exampe by Milgrom (2004) and Klemperer (2004) in the context of
spectum rights auctions.
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ductively used by multiple firms, although at some point negative externalities among users

may emerge. Second, patents are ‘excludable,’ because additional users can be prevented from

accessing a new technology protected by a patent. These attributes make patents an example

of a ‘club good.’6 Hence, although we focus on the patent application, the analysis presented

here applies to any other club good.7 The non-rivalrous but excludable nature of club goods

colors the incentives for coalitions to form in auctions, and the costs and benefits that the

seller internalizes from their presence. In particular, the non-rivalrous nature of consumption

means that coalition formation can increase bidders’ valuations, and therefore revenues, at

least over some range of coalition sizes. The narrative of coalition formation in the Nortel

patent auction is suggestive of this feature. On the other hand, coalitions tend to depress the

degree of competition on the market and may have a negative effect on the seller’s revenue.

We explore these economic forces with a model in which a seller owns a patent that

has multiple different applications. Let the number of applications be n. There is a pool of

N potential firms interested in buying access to the underlying technology. The timing of

our game is as follows: first, firms are allowed to aggregate into coalitions. Once coalitions

are formed, every coalition establishes its own value for the patent based on its members’

independent and private values’ realizations. Once these values are determined, the auction

takes place and coalitions are allowed to participate in the auction as individual bidders. Once

the auction has taken place, the winning coalition allows its members to access the underlying

technology (through, say, licensing).8

The process that determines each coalition’s value for the patent accounts for the presence

of potential negative externalities among patent users: once the patent’s applications are

implemented by n firms, distributing licenses further among members generates no additional

value for the coalition.9 Therefore, if the winning coalition is larger than n, it does not

distribute licenses to all of their members, but only to n of them.

6See Buchanan (1965).
7Our setup also applies to auctions in which a bundle of goods, rather than a single one, are sold together,

and coalitions of buyers (each with a single-unit demand) are allowed to participate as individual bidders
(see Avery and Hendershott, 2000). In addition, Albano, Spagnolo, and Zanza (2008) and Albano (2017)
have documented and discussed the widely common presence of joint bidding in procurement auctions. An
argument used to justify the practice is the fact that projects are complex, and they may require very different
skills and expertises to be completed. Our analysis applies to these scenarios as well.

8The Nortel auction has nuances that we abstract from for the sake of tractability. Notably, we do not
allow coalitions to form or change during the course of the auction.

9For example, if two firms commercialize the same application, some value is destroyed by market compe-
tition.
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We model how each coalition’s value for the patent is formed in two alternative ways. In

the first environment, which we name ‘the limited-value case,’ after the coalition formation

stage, each coalition larger than n arbitrarily chooses n members who then obtain a private

and independent realization for the patent’s value, drawn by the same distribution. Therefore,

the valuation for the patent for each coalition is the sum of the realizations of the individual

private valuations of its members, up to a maximum of n realizations. In the limited-value

case, any coalition (weakly) larger than n has the same value distribution, and therefore the

same probability of winning the auction. In the second environment, which we name ‘the

optimized-value case,’ if a coalition is larger than n, all firms in the coalition obtain a value

realization for the patent, and the coalition selects the firms with the n highest realizations

to distribute the patent to. Hence, the coalition’s valuation for the patent is the sum of the n

highest realizations. If a coalition’s size is less than or equal to n, the limited-value case and

the optimized-value case are equivalent.

We consider the process of coalition formation, which takes place before the values realize.

Foreseeing each coalition’s value, as well as the equilibrium outcome of the auction, firms

endogenously form coalitions. Stable coalition profiles are ones that satisfy natural equilibrium

constraints in the coalition-formation stage: a coalition profile is stable if no firm has a

profitable unilateral deviation in joining a different coalition, or in participating in the auction

as individual bidder.

Our first main results illustrate the effect of increasing the concentration of bidders by

moving one firm i from a (weakly) smaller to a larger coalition, when both coalitions are

strictly smaller than n. Such a move has several implications on the two coalitions’ expected

auction outcomes: (i) it changes the value distribution of the patent of both coalitions by

adding firm i’s realization to the valuation of the larger coalition and subtracting firm i’s

realization from the valuation of the smaller one; (ii) it changes the expected price paid by

either of the two coalitions conditional on winning, and (iii) it increases the probability of

winning the auction for the larger coalition, and it decreases the probability of winning for

the smaller coalition. First, we show that such a move always increases the expected valuation

of the auction’s winner, and therefore increases total welfare. Second, we show that the overall

benefits generated by such move for the larger coalitions are higher than the expected costs

generated for the smaller one, so that the move strictly increases the joint expected payoffs of

the two coalitions in the auction. In other words, an individual firm generates strictly more
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additional coalitional value by joining a larger coalition than a smaller one.10

The latter result has several important implications. First, it suggests that when coalitions

of firms are allowed to participate in patent auctions there is a strong incentive for them to

aggregate in coalitions large enough to exploit all the patent’s applications. In particular,

stable coalition profiles never include multiple coalitions strictly smaller than n. However, this

tendency toward aggregation is mitigated by the presence of negative externalities: once a

coalitions becomes large enough (i.e., it already includes at least n firms), the additional value

generated by additional members decreases, diminishing their ability to attract more firms.

The result allows us to identify a set of necessary conditions for stable coalition profiles, which

depends on the interplay between n and the total number of firms on the market, N.

Second, it allows us to derive implications on the seller’s revenue under stable coalition

profiles. These implications depend on the way coalitions form their valuation for the patent.

In the limited-value case, we find that, once a coalition has already expanded to n firms, the

addition of new firms to that coalition always (weakly) reduces the expected revenue of the

seller in the auction. This result allows us to identify upper bounds for the seller’s revenue:

If the number of applications n is large relative to N , the expected revenue for the seller

is very small. In particular, the expected second highest realization between the sum of n

individual valuations, and the sum of N−n ones constitutes an upper bound for the expected

revenue of the seller across all stable coalition profiles . As n approaches N, the seller’s

revenue converges to zero. On the other hand, if n is smaller, there can be enough firms in

the industry to aggregate into multiple coalitions of size n. In this case, the upper bound we

identify for the seller’s revenue is more significant, and it amounts to the expected second

highest realization among dN/ne coalitions, all of size n except at most one. These results

allow us to deliver a specific recommendation to allow the seller to generate the previously

identified revenue’s upper bound in the limited-value case. In particular, we show that if the

seller introduces a ceiling on the coalitions’ size equal to n (i.e., before coalitions form the

seller announces that only coalitions of size up to n are allowed to participate in the auction),

there is a uniquely stable coalition profile. As it turns out, such profile achieves the upper

bound for the seller’s revenue previously identified, and it also maximizes the expected welfare

across all the coalition profiles.

10As these results pertain to coalitions strictly smaller than n, they hold both in the limited-value case and
in the optimized-value one.
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Next, we study the seller’s revenue in the optimized-value case. In this case, even coalitions

that are already of size n or larger can still increase their own expected value by adding new

members (as they will be able to select the n highest among a larger number of draws). On

one hand, for any given coalition profile, large coalitions would bid more aggressively, hence

improving the seller’s revenue. On the other hand, firms have an even stronger incentive

to aggregate into large coalitions, resulting in fewer coalitions and lower seller’s revenue. To

illustrate this tendency, we show that even in the presence of very strong negative externalities

(n = 1), the grand coalition is the only stable coalition. Although this outcome achieves the

first best from a welfare perspective (because the patent is guaranteed to be implemented by

the firms with the n highest realizations in the economy), this comes at the detriment of the

seller’s revenue.

In addition to selling a patent through an auction, IP owners typically have the option

of retaining ownership of the patent and licensing it to multiple parties through a multi-

object auction. In the last part of our analysis we compare the two auction formats from

the seller’s revenue perspective. The comparison between the two selling mechanisms involves

the following trade-off: in a multi-license auction, each firm participates in the auction as an

individual bidder, and the seller’s revenue is determined by the highest realization of the new

technology’s value among the losers of the auction. For a relatively high number of licenses

on sale, this realization can be rather low. On the other hand, in a patent’s auction, bids

coincide with the sums of the coalition members’ realized valuations. Therefore, the winning

bid is the highest sum, and the seller’s revenue is the second highest sum, of randomly chosen

realizations. We focus our attention on gamma-distributions and, by simulation, we find

that multi-license auctions dominate patent auctions as selling mechanism across the vast

majority of the parameter space we investigate. We also find that patent auctions have the

best chance to perform well vis-à-vis multi-license auctions when the number of applications

n is relatively large, and the distribution of the valuations is relatively right-skewed (i.e., the

difference between the highest realizations and the others is relatively large).
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Related Literature.

The question of how to sell IP has been examined in a literature starting from Katz and

Shapiro (1985). This line of work considers the strategic choice of selling, unilaterally ex-

ploiting, or licensing IP when the seller and buyers are competitors in the product market,

and transactions typically occur in the IP market via bargaining or take-it-or-leave it offers.

Our approach is different as we focus on the performance and structure of auctions as selling

mechanisms for IP and other club goods.

Related theoretical work has considered the commercialization of licenses in the context

of auctions with negative externalities (see Hoppe, Jehiel, and Moldovanu, 2006, Jehiel and

Moldovanu, 1996, and Jehiel, Moldovanu, and Stacchetti, 1996). By contrast, we focus on the

club-good nature of IP, rather than the fact that the losing participants in a patent auction

may experience negative externalities on the final marketplace. In this sense, our work follows

a relatively sparse literature on club goods started by Buchanan (1965), with more recent

work by Deb and Razzolini (2001), Baik, Kim, and Na (2001), Norman (2004), and Fang

and Norman (2010). In this literature, Loertscher and Marx (2017) study optimal pricing

mechanisms for intermediaries of club goods. This article differs from this literature in allowing

buyers to form coalitions which act as individual entities on the club-good marketplace.

This article is also related to different strands of the auction literature. Comparing alter-

native auction formats and studying the optimal auction problem from the seller’s perspective

is a classic question in auction theory.11 In this literature the set of bidders is typically exoge-

nous and fixed across the different auction formats and, except for a few notable exceptions,

the bidders are symmetric. Our methodological approach is fundamentally different because

in this article the auction format chosen by the seller endogenously determines the set of

(potentially asymmetric) bidders. We choose to focus on second-price auctions (or, equiva-

lently, ascending-price auctions) because they are empirically relevant and analytically easier.

Clearly, if we had chosen a different auction format (say, a first-price auction), a different sets

of bidders would arise in the coalition-formation process. In particular, studying stable coali-

tion profiles would require characterizing the equilibrium bidding behavior for a large range of

asymmetric bidders’ profiles, which is well-known to be challenging for first-price auctions.12

11See Milgrom (2004) for a comprehensive overview.
12Asymmetric auctions have been studied, among others, by Maskin and Riley (2000a and 2000b), Cantillon

(2008), and, more recently, by Kirkegaard (2009, 2012). For example, Kirkegaard (2012) ranks second- and
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Considering coalitions of buyers in auctions draws a natural parallel to the large literature

on bidding rings (see the excellent overview provided by Marshall and Marx, 2012).13 In

this literature, because collusive behavior tends to hurt the seller’s revenue and is deemed

illegal under the antitrust laws, bidders’ cartels need to be self-enforcing (see for example

McAfee and McMillan, 1992). Our perspective is different, because in the case of an auction

for a club good, coalition formation can benefit the seller, and need not be presumptively

anticompetitive. Therefore, we completely abstract from self-enforcement issues and we study

plausible patterns of coalitions when they are allowed to form.

A strand of the literature on bidding rings considers the formation of collusive agreements

between two bidders. Specifically, this line of research considers variations on a game in

which, after individual valuations are realized, the two bidders can try to reach an agreement

to prevent one of them from bidding in an upcoming auction. Because values are realized

before the negotiation, the behavior of the bidders in the negotiation can signal their private

information. This information can be valuable to the rival in the event that no collusive

agreement is reached. This problem has been addressed by Eso and Schummer (2004) and

Toyan (2017) in the context of second-price auctions, and by Rachmilevitch (2013) and Zheng

(2019a) in the context of first-price auctions.14 Our article is distinguished from this line

of work in several ways, notably by considering more than two bidders, adopting a different

coalition formation protocol, and by focusing on club goods, for which a coalition’s valuation

first-price auctions in the case of two asymmetric bidders. In our setting, characterizing stable coalition profiles
in first-price auctions would require an analysis of auction outcomes for multiple asymmetric bidders. In turn,
this would yield to a comparison between first- and second-price auctions in which the (endogenous) sets of
bidders for each auction format are potentially different from each other. Hence, comparing alternative patent
auctions’ formats would be an interesting next step, but it is clearly beyond the scope of this article.

13For more recent contributions in this literature, see Chassang and Ortner (2019) Che, Condorelli, and Kim
(2018), Decarolis, Goldmanis, and Penta (2020), and Decarolis and Rovigatti (2020). In particular, Decarolis,
Goldmanis, and Penta (2020) study the role of bidding intermediaries in the context of online advertisment
auctions. Interestingly, they address the stability of a collusive coalition, in which the members’ individual bids
are coordinated by one bidding intermediary. Our set-up is different in many dimensions, primarly because
the incentives to form coalitions are fudamentally affected by the public-good nature of a patent. Also, in the
coalition-formation game, we allow any number of coalitions to arise endogenously.

14Other contributions include Zheng (2019b), Chen and Tauman (2006) and Kivetz and Tauman (2010).
Earlier work by Brusco and Lopomo (2002) considers a setting in which bidders coordinate during the course
of an ascending price auction on the allocation of multiple objects among them. Agranov and Yariv (2018)
undertake closely related experiments on the formation of collusive agreements through communication prior
to an auction.
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depend on the coalition’s size.15,16

A related line of literature considers the question of how to optimally design a sale when

buyers can collude (for example, see Laffont and Martimort, 1997 and 2000, Pavlov, 2008,

and Che and Kim, 2006 and 2009). These articles model cartel formation as being facilitated

by an uninformed third party that proposes a mechanism to coordinate the activity of the

cartel.17 This, in turn, puts further constraints on the principal’s mechanism design problem.

This article differs from that line of literature by taking a more applied approach and by

considering the (positive) question of how bidders form coalitions given a specific set of auction

environments for club goods. Notably, our approach allows for multiple coalitions to form and

compete in the auction, which the approach taken by this line of work does not allow for.

Thematically this article is perhaps closest to Cho, Jewell and Vohra (2002), who consider

coalition formation among budget-constrained bidders who compete in a first-price sealed

bid auction. All bidders have the same budget constraint and valuation, and these are both

common knowledge among all players. The coalition-formation stage is modeled using a

dynamic coalition-formation game developed in Ray and Vohra (1999).18 Although there

are clear distinctions (in Cho, Jewell and Vohra, 2002, coalitions form to mitigate budget

constraints, there is complete information in the auction, and the coalition-formation stage

unfolds through bargaining), in both our setting and Cho, Jewell, and Vohra (2002)’s the

seller may benefit from the formation of coalitions among bidders

Finally, the notion that the set of players in a strategic situation is, in itself, endogenous

is present in some work on club formation (see, e.g., Ellickson, Grodal, Scotchmer, and Zame,

1999, and Wooders, Cartwright, and Selten, 2006). More recently, Baccara and Yariv (2013

and 2016) have studied the (endogenous) homogeneity of players in the context of public-good

games.

15Somewhat related is Garratt, Troger and Zheng (2009) which considers an ascending auction with resale.
They show that the ex-post knockout structure can arise in equilibrium in ascending auctions with resale
(see Porter, 1992, and Marshall and Marx, 2012, for discussion of knockout auctions in practice). This is in
contrast to the ex-ante knockout studied by Graham and Marshall (1987) and Asker (2010).

16Also, Chatterjee, Mitra, and Mukherjee (2017) consider a dynamic model of coalition formation with
multiple bidders with heterogeneous and publicly known valuations.

17Graham and Marshall (1987) provide an early contribution that studies the optimal size of a bidding ring
that uses an ex-ante knockout auction. Lopomo, Marshall and Marx (2005) consider the efficiency of the
collusive mechanism, finding that, without pre-auction communication, budget-balanced collusive mechanism
can yield inefficient outcomes in an auction.

18Ray and Vohra (2015) provide a survey of related coalition formation models applied in a variety of
settings.
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2 The Model

Set-Up

A seller owns a patent on a new technology, and several ex-ante identical firms are all potential

adopters. Let N be the set of firms on the market, and N ≡ |N | > 1.19 The patent is made

available for sale in a second-price auction, in which coalitions of firms can participate as

individual bidders. If the patent is sold to a coalition of firms, the coalition can make it

available to multiple members.

Each firm i’s private valuation Vi is independently drawn from the same non-degenerate

distribution F over R+.
20 We assume that 0 ∈ supp(F ), E(Vi) = v > 0, and the distribution

has a log-concave density f .21 In our analysis, we denote by V(n,i) the i-th highest realization

among n draws from the distribution F , and by v(n,i) its expected value.

The game unfolds as follows:

(1) Firms form coalitions (see Section 2.3);

(2) Firms’ valuations for the patent are realized. Coalitions determine their value for the

patent according to either the limited-values or the optimized-value case (see Section

2.2);

(3) Coalitions participate as individual bidders in a second-price auction (or, equivalently, an

ascending-price auction) to buy the patent;

(4) Some or all members of the winning coalition gain access to the patent (see Section 2.2).

Before we discuss how coalitions form and determine their own valuations for the patent,

some other assumptions merit discussion. As mentioned before, the assumption that the

seller uses a second-price auction (or, equivalently, an ascending-price auction) is made, in

19Throughout the article, we assume N to be exogenous and therefore abstract from firms’ entry decisions
in the auction. If that is not the case (for example, N grows in the number of applications n), our qualitative
analysis still applies, with the only difference that the results will depend also on way in which n determines
N .

20In the Online Appendix, we present the case in which all firms’ valuations are known and symmetric.
21That is, log f is concave on supp(F ). Examples of distributions with log-concave density functions in-

clude the uniform distribution (over any positive-length interval), the exponential distribution, the normal
distribution (including any truncated one over [a, b] for −∞ ≤ a < b ≤ ∞), the gamma distribution, the beta
distribution, etc.
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part, for tractability and because of the empirical relevance of these classes of auctions in

industry applications. As it will become apparent, if coalitions of different sizes arise in the

coalition-formation stage, their valuations have different distributions. A second-price auction

ensures bidding their own value to be each coalition’s weakly dominant strategy, allowing us

to characterize the equilibrium outcome of the asymmetric auction.22 Note also that we do

not allow the seller to impose a reserve price on the auction. Any reserve price would affect the

coalition-formation stage, yielding a different set of bidders. This substantially complicates

the problem of identifying the optimal reserve price. In Section 3.2 we address this assumption

further and propose an alternative, and simpler, tool that the seller can use to increase the

revenue.

In our analysis we also rule out the possibility of a secondary market for the patent.

Allowing for secondary markets would require to add a third stage of the game in which, after

the auction has taken place, the winner can resell the patent to another firm or coalition.

This would make the coalitions’ valuations for the patent a function of the ex-post market

outcomes and, in turn, of the whole coalitions’ profile. This possibility introduces non-trivial

complications and it is left to further research.23

An assumption underlying the coalition formation stage is that all firms observe the sizes

of the other coalitions.24 The assumption that valuations are realized after coalitions are

formed is conducive to tractability, as it allows us to abstract away from potential strategic

communication issues at the time of coalition formation.25 In addition, such assumption allows

us to capture applications in which coalitions carry out joint research to acquire information

about the patent. We come back to the possibility of joint research in the next section, and

to alternative timing assumptions in Section 5.2.

22Equilibrium bidding behavior in first-price auction with asymmetric bidders is well-known to be signifi-
cantly more difficult to fully characterize as discussed in Section 1.2 (see Maskin and Riley, 2000a and 2000b,
and Cantillon, 2008).

23See Garratt, Troger, and Zheng (2009) for a related model of an ascending auction with resale in the
presence of collusion.

24This assumption simplifies the analysis of the coalition formation stage, but because we consider a second-
price auction, any assumption on the information structure at the time of the auction (e.g., firms observe some
other coalition’s members’ valuations, etc.) is irrelevant for the auction’s outcome.

25Coalitions’ formation with asymmetric information is known to be challenging and require numerous
additional assumptions. See for example Dutta and Vohra (2005), and the related references in Section 1.
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Coalitions’ Values

In this section we illustrate how coalitions determine their own value for the patent. In general,

we assume that if too many firms in the winning coalition adopt the patent, not all of them

are able to enjoy its full benefits. For tractability, we represent a diminishing marginal value

of the technology with an exogenously given n ≤ N (which is common knowledge among

all firms), such that only up to n firms in the winning coalition can extract a positive value

from the new technology. If more than n firms adopt it, any firm in excess of n obtains zero

value from the adoption. We model the way in which a coalition determines its value in two

alternative ways, which we term limited-value case and optimized-value case, respectively.

Definition 1 (Limited-Values Case) In each coalition, at most n randomly selected firms

obtain a realization of V and can adopt the patent. For a coalition of size m, this yields

the coalition’s value W =
∑min{m,n}

i=1 Vi, where, for m > n, i = 1, 2, . . . , denote some

randomly chosen firms in the coalition.26

Definition 2 (Optimized-values Case) Every firm on the market obtains a realization of

V, and each coalition of size m selects the highest min{m,n} realizations among its

members to determine the value of the patent. This yields the coalition’s value W =∑min{m,n}
i=1 V(m,i).

Notice that for coalitions (weakly) smaller than n, the coalition’s value is equal to the sum

of all members’ realizations in both the limited- and the optimized-value cases. Therefore, for

coalitions smaller than n the two cases are equivalent. Also, a fundamental difference between

the limited-values and optimized-value cases is that, under the former, all coalitions of any

size m ≥ n have the same value distribution. On the other hand, under the latter, coalitions

of size m ≥ n can still benefit from additional members as they will allow them to select the

n highest from a larger pool of realizations.

Our externalities’ structure can be also interpreted as follows. Suppose that the patent

has a maximum number n of distinct applications which are unrelated to each other, and

that, within each coalition, a realization of V represents the realized value of one application.

26Therefore, in the limited-value case, the value distribution of any coalition of size m is the convolution of
min{m,n} individual distributions F.
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In addition, assume that that if more than n firms adopt the technology within a coalition,

cumulative profits start decreasing because of increased competition in some applications’

markets.27 Along these lines, n could be interpreted as the number of adopting firms that

maximizes the cumulative value of the patent for any coalition of size m > n. In this case,

the coalition would never find it optimal to let more than n firms adopt the technology, and

our assumption (any firm in excess to n obtains zero value from the adoption) would imply

no loss of generality.28

In our model, after alliances among firms are formed, firms in each coalition research the

applications of the patent in order to obtain a realization of V . The limited-value case applies

when each application can be investigated by at most one member (this could be due, for

example, to substantial research costs). Hence, although larger coalitions have the breadth to

explore more applications than smaller ones, they still cannot obtain more than n realizations

of the patent’s value. Therefore, each coalition strictly larger than n randomly selects n firms

that will explore the patent’s applications. After the research has been concluded, those firms

learn their private valuations, and they make them public within the coalition. At that point,

the coalition assesses its total value of the patent and participate as a bidder in the auction.

The optimized-value case corresponds to situations in which conducting research and ob-

taining value realizations is relatively cheap, so that each firm is able to determine their

individual valuation for the new technology. Therefore, each coalition strictly larger than n is

able to observe all the realizations obtained by its members and, upon winning the auction,

to maximize the coalition’s profit, it gives access to the patent to the n members associated

with the highest valuations.

An assumption underlying the coalitions’ value formation process is that all firms’ indi-

vidual realizations are public information within the coalition. This allows each coalition to

determine its own value without concerns of potential misreporting on the members’ side. Be-

cause we are focusing on coalitions that can regulate themselves using legal contracts, we view

misreporting concerns as less severe than in illegal bidding rings, which need to be necessarily

self-enforcing.

27For example, consider a new type of lens, that could be applied to produce glasses, binoculars, and
telescopes. However, if more than, say, one firm in the same product market adopts the new lens, joint profits
in that market decline. Therefore, we have n = 3.

28One could consider more general externalities’ structures by allowing the adoption of the technology to
yield strictly decreasing (rather than constant up to n, and then equal to zero) marginal returns. This extension
is discussed in Section 5.
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Finally, we assume that any coalition that does not win the auction gets zero payoff

regardless of the number of firms adopting the new technology (i.e., there are no negative

externalities on non-adopting firms). This assumptions allows us to avoid a coalition’s value

to depend on the number and size of other coalitions.

Coalitions and Stability

Before values are realized and the auction takes place, firms can form coalitions. Consider

σ = (σ1, .., σJ) to be a partition of the set N , or a coalition profile.29 Within each coalition

profile σ, each coalition σj ∈ σ (which could be a set of multiple firms or an individual firm)

is a bidder in the auction. Let nj ≡ |σj|–that is, nj is the size of coalition σj. Without loss of

generality, let σ1 be the largest coalition within σ, σ2 the second largest, etc., and so on–that

is, n1 ≥ n2 ≥ ... ≥ nJ .

For coalition σj, the total value of the patent Wj is determined as described in Section

2.2. As two coalition profiles characterized by the same profile {n1, .., nJ} are ex-ante payoff-

indistinguishable, we treat such coalition profiles as an equivalence class and denote the re-

sulting collection of equivalence classes by Σ. For sake of simplicity, we refer to the elements

of Σ as coalition profiles rather than equivalence classes of coalitions profiles.

Given a coalition profile σ, the payoff of coalition σj from winning the auction is the

difference between the realization of Wj and the second highest bid. We denote the coalition’s

profit from an ex-ante perspective (i.e., expected at the time of the coalition formation, before

private valuations realize) by π(σj;σ). For any coalition profile σ = (σ1, σ2, . . . , σJ), σj’s

expected payoff is

π(σj;σ) = Pr{σj wins} × E [Wj − Pj | σj wins] ,

where Pj is the price paid by σj conditional on winning. For standard arguments, it is imme-

diate to see that in the second-price auction each coalition has a weakly dominant strategy

in bidding their own value. In the rest of the article, we focus on equilibria of the auction

stage in which bidders bid their own value. Therefore, π(σj;σ) is well-defined for any σ and

σj ∈ σ.30

29That is, (i) for each j, ∅ 6= σj ⊆ N , (ii) for each j 6= k, σj ∩ σk = ∅, and (iii)
⋃J
j=1 σj = N . Note that we

do not allow the same firm to join two coalitions.
30Any tie-breaking rule we specify for the auction is inconsequential in determining the payoffs as such a

rule is applied only in events in which the payoffs of the winning coalitions are zero.
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The following notation will be useful for our analysis. Any given set of bidders σ =

(σ1, .., σJ) is associated with a valuation vector (W1, ...,WJ). The winner of the patent is

the coalition associated with the highest realization in (W1, ...,WJ), and the revenue raised

corresponds to the second-highest realization. Denoting as W(σ,m) the m-th highest realization

associated to the vector (W1, ...,WJ), and as w(σ,m) its expected value, the expected revenue

of the seller given a set of bidders σ is R(σ) ≡ w(σ,2).
31

Next, we describe the equilibrium notion we adopt. As, in our model, utility is transferable,

we focus on coalition profiles that satisfy the stability notion illustrated in the following two

definitions.

Definition 3 (Profitable Deviation) Consider a coalition profile σ = (σ1, .., σJ). A firm i

in coalition σj ∈ σ has a profitable deviation if at least one of the following is true:

1. The coalition profile σ′ = (σ′1, . . . , σ
′
J+1) with σ′j = σj\{i}, σ′J+1 = {i}, and σ′k = σk for

k 6= j, J + 1 is such that

π(σj;σ) < π(σ′j;σ
′) + π({i};σ′); (1)

2. For some k 6= j, the coalition profile σ′ = (σ′1, . . . , σ
′
J) with σ′j = σj\{i}, σ′k = σk ∪ {i},

and σ′h = σh for h 6= j, k is such that

π(σj;σ) + π(σk;σ) < π(σ′j;σ
′) + π(σ′k;σ

′). (2)

Definition 4 (Stable Coalition Profile) A coalition profile σ is stable if no firm has a

profitable deviation.

In words, the two requirements for a stable coalition profile read as follows: (1) there

exist no coalition σj and firm i ∈ σj that would receive a strictly higher payoff as a singleton

than the amount that her current coalition σj is willing to pay to make her stay, and (2)

there exist no transfer that a coalition σk would be willing to pay a firm i belonging to a

31Again, R(σ) is well-defined because we focus on equilibria involving weakly dominant strategies in the
auction stage.
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different coalition σj that is strictly higher than the amount that coalition σj is willing to pay

to make firm i stay. Each firm, taking as given how other firms aggregate, and foreseeing the

equilibrium played in the auction stage, unilaterally selects to be in the coalition where her

own marginal value is the highest. Stability is, therefore, a natural equilibrium condition for

the coalition-formation stage.32 In what follows, for any given N and n(≤ N), we denote the

set of stable coalition profiles by Σ∗(N,n).

The idea of a stable coalition profile is reminiscent of the notion of the core, which also

requires a type of group stability.33 Nonetheless, there are some important distinctions. First,

the setup is different – cooperative games normally specify exogenous group values, rather

than group values that are derived endogenously from a strategic interaction (specifically, an

auction). Second, under a transferable utility assumption, the core coincides with the coalition

profile that maximizes the sum of all coalitions’ expected payoffs. In our game, however,

each coalition’s expected payoff in the auction depends on the entire coalition profile.34 A

deviation which is jointly profitable for the coalitions directly involved in it may impose

negative externalities on other coalitions’ profits. Therefore, a coalition profile that maximizes

the sum of all coalitions’ expected payoffs may not be stable.35 Third, we take a unilateral-

deviation approach in our stability notion, whereas cooperative solutions such as the core

allow for arbitrary group deviations. As the auction stage of our game is non-cooperative, we

adopt this notion of stability rather than a cooperative one to make the equilibrium notions

in the game internally coherent.36 In Section 5.1, we discuss the implications of considering

joint deviations on our results.

32As we take a unilateral-deviation approach throughout the article, we are agnostic with respect to the
question of whether there is enough surplus within a coalition to compensate multiple members when they
consider deviating simultaneously to other coalitions.

33For a recent survey on group formation and stability concepts, see Ray and Vohra (2015). See also
additional references in Section 1.

34As it becomes apparent below, the entire coalition profile affects the probability of a coalition winning the
auction as well as the expected price paid conditional on winning.

35More formally, for each coalition profile σ = (σ1, . . . , σJ), let the expected total welfare be Π(σ) ≡∑J
j=1 π(σj ;σ). A coalition profile σ∗ ∈ arg maxσ∈Σ Π(σ) may not be stable. In fact, a firm’s unilateral

deviation could increase the sum of the payoffs of the coalitions involved in (1) or (2), although at the same
time decreasing the total welfare by lowering the payoffs of coalitions not directly involved in the deviation.

36Similar notions of stability with respect to unilateral (or bilateral) deviations are common in the matching
and network literature.
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Welfare

In this section we discuss our model from a welfare perspective. The ex-post first best is

achieved if the patent is implemented by the firms with the highest n realizations in the

economy. In general, the presence of multiple coalitions of firms constitutes an impediment

for this to happen: because the auction’s mechanism selects the winner according to the

highest sum of realizations within each coalition, some of the n highest realizations in the

market could be wasted from a ex-post welfare perspective because they happen to occur in

a losing coalition.

Still, from an ex-ante perspective, we can identify the coalition profile that maximizes the

expected social value generated by the patent. Specifically, recall that, for any coalition profile

σ = {σ1, .., σJ} associated with a valuation vector (W1, ...,WJ), we denote as W(σ,1) the highest

realization, and as w(σ,1) its expected value. Because the winner of the auction is the coalition

associated with the highest realization in σ, we define as S(σ) ≡ w(σ,1) the expected welfare

generated by coalition profile σ. The most efficient among all coalition profiles is the one that

maximizes the expected welfare. The next result illustrates the effect of concentrating firms

into larger coalitions on welfare. All proofs are in Section 6.2.

Proposition 1 (Effect of Concentration on Welfare) Let σ = (σ1, . . . , σJ) be a coali-

tion profile such that 0 < nj ≤ nk < n. For any firm i ∈ σj, let σ′ = (σ′1, . . . , σ
′
J) be

such that σ′j = σj\{i}, σ′k = σk ∪ {i}, and σ′h = σh for h 6= j, k. Then, S(σ′) > S(σ).

Proposition 1 guarantees that, if two coalitions are strictly smaller than n, and we move

one firm from the (weakly) smaller to the larger coalition (therefore, increasing the concentra-

tion of firms into larger coalitions), the expected welfare strictly increases. To understand the

intuition of Proposition 1, consider moving a firm i from coalition σj to σk, when both coali-

tions are strictly smaller than n and, for simplicity, assume that σj and σk are the only existing

coalitions, so one of them wins the auction for sure. This move implies that the distribution

of the coalition σk’s valuation in the auction (the convolution of nk identical distributions F )

‘increases’ (in likelihood-ratio order sense) by one additional distribution F, whereas the dis-

tribution of coalition σj’s valuation in the auction ‘decreases’ (in likelihood-ratio order sense)

by one distribution F. For convenience, denote X ≡
∑

a∈σj\{i} Va, and Y ≡
∑

a∈σk Va, and note

that the welfare values before and after the move are max{X + Vi, Y } and max{X, Y + Vi},
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respectively. Intuitively, adding Vi to the value that is already more likely to be larger must

contribute more to the maximum between the two variables. In fact, max{X, Y +Vi} first-order

stochastically dominates max{X + Vi, Y }, yielding a higher expected welfare. Proposition 1

formalizes this intuition and generalizes it to the presence of other coalitions.

We make two observations pertaining to Proposition 1. First, because the result addresses

coalitions that are strictly smaller than n, and for such coalitions the limited-values and

optimized-value cases are equivalent, Proposition 1 holds in both cases. Second, Proposition

1 implies that any coalition profile including more than one coalition strictly smaller than n

cannot be optimal from a expected-welfare perspective.

To understand the implications of Proposition 1 on the social planner’s preferred coalition

profile, and the interplay between ex-ante efficiency and first best, we need to distinguish

between the limited-values and the optimized-value cases.

Welfare in the Limited-value Case

Let us start by identifying the coalition profile that maximizes the expected welfare value in

the limited-value case. Note that any coalition profile including at least one coalition strictly

larger n cannot be optimal from a welfare perspective. Indeed, if all firms in excess to n

separate from their coalition to form their own new coalition, the expected highest value of

the new coalition profile strictly increases. On the other hand, Proposition 1 implies that any

profile including more than one coalition strictly smaller than n cannot be optimal from a

welfare perspective. Therefore, the coalition profile σ̃ that includes the maximum number of

coalitions of size n, and aggregates all the remaining firms into one smaller coalition must be

optimal from an expected welfare perspective. Formally, let σ̃ ≡ (σ1, .., σK) with K ≡ dN/ne,
n1 = ... = nK−1 = n and nK = N−n(K−1). The next result follows directly from Proposition

1.

Corollary 1 (Welfare Maximization in the Limited-Value Case) σ̃ uniquely maximizes

the expected welfare value among all coalition profiles.

Despite being the most efficient coalition profile ex-ante, profile σ̃ still does not guarantee

to achieve the ex-post first best. As noted above, because the winning coalition in σ̃ is the

one that realizes the maximum sum of the members’ realizations, the first best is not achieved

unless, ex-post, all the n highest realizations happen to belong to the same coalition.
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Welfare in the Optimized-value Case

In the optimized-value case, all firms in the economy always obtain a realization, and the

winner of the auction is the coalition with the highest sum of the highest n realizations within

the coalition. In the grand coalition σ = (N ), the patent’s value always corresponds to sum

of the n highest realizations in the economy. Therefore, in the optimized-value case, not only

does the grand coalition maximizes the expected welfare, but it also guarantees that the n

highest realizations in the economy are implemented ex-post. Therefore, the grand coalition

uniquely achieves the first best.

3 Stable Coalition Profiles and Seller’s Revenue

In this section we first study the stable coalition profiles and then we derive their implications

on the seller’s revenue and the welfare.

Stable Coalition Profiles

We start the analysis by addressing the existence of a stable coalition profile in our setting.

The next result shows that the grand coalition is stable under a mild assumption on the

distribution F in the limited-values model, and it is always stable in the optimized-values

model.

Lemma 1 (Existence of a Stable Coalition Profile)

(a) In the limited-value case, if 3v(n+1,2) +
∑n+1

h=3 v(n+1,h) ≥ v(n+1,1), then the grand coalition

is stable;

(b) In the optimized-value case, the grand coalition is always stable.

Part (a) of Lemma 1 provides a sufficient condition on F for the existence of a stable

coalition profile in the limited-value case. This condition is satisfied for a large class of

distributions F .37 Intuitively, consider a firm i that may deviate from the grand coalition and

37For example, if each firm i’s private valuation’s distribution is Vi ∼ U [0, 1], the condition in Part (a) of
Lemma 1 becomes n+1

n+2 ≤ 3 n
n+2 + n−1

n+2 + · · · + 1
n+2 , which holds for every n ≥ 1. Also, if Vi ∼ exp(β), we

have V(n+1,n+1) ∼ exp((n+ 1)β) and v(n+1,n+1)=
1
β

1
n+1 . Because the exponential distribution is memoryless,

the difference between V(n+1,n) and V(n+1,n+1) follows an independent exponential with parameter nβ, which

results in v(n+1,n) = 1
β ( 1

n+1 + 1
n ). Similarly, v(n+1,i) = 1

β ( 1
n+1 + 1

n + · · ·+ 1
i ). Therefore, the condition in Part
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form a coalition {i} by itself. The singleton coalition can win the auction and realize a positive

profit only in the scenario in which firm i’s realization is the highest among n+ 1 draws from

the distribution F , and the sum of all other n draws is lower than firm i’s realization. In this

scenario, the price paid by coalition {i} is the sum of the other n realizations. Therefore, the

grand coalition tends to be stable if v(n+1,1) is low relative to the sum all other order statistics

v(n+1,h) for h = 2, ..., n + 1. Part (b) of Lemma 1 guarantees that, in the optimized-values

model, the grand coalition is always stable. This follows immediately from the fact that the

grand coalition always achieves the maximum feasible payoff in this market, i.e., the sum of

the n highest realizations across all N firms.

Next, in Proposition 2, we describe an important and general property of the coalitions’

auction equilibrium payoffs. In the proof (which is in Section 6.2), we exploit some tools drawn

from the literature on stochastic orders. For ease of reference, these tools are summarized in

Section 6.1.

Proposition 2 (Effect of Concentration on Coalitions’ Payoffs) In both the limited-values

and optimized-value cases, let σ = (σ1, . . . , σJ) be a coalition profile such that 0 <

nj ≤ nk < n. For any firm i ∈ σj, let σ′ = (σ′1, . . . , σ
′
J) be such that σ′j = σj\{i},

σ′k = σk ∪ {i}, and σ′h = σh for h 6= j, k. Then,

π(σj;σ) + π(σk;σ) < π(σ′j;σ
′) + π(σ′k;σ

′).

Proposition 2 explores the consequences of moving one firm from a (weakly) smaller to a

larger coalition, when both initial coalitions are strictly smaller than n. Our result guarantees

that this move always strictly increases the two coalitions’ joint payoffs.

Similarly to Proposition 1, because Proposition 2 pertains to coalitions that are strictly

smaller than n, and for such coalitions the limited-values and optimized-value cases coincide,

Proposition 2 holds in both cases. Moreover, note that Proposition 2 holds without the

additional assumption on F imposed in Part (a) of Lemma 1.

To understand Proposition 2, intuitively, consider a unilateral move of a firm i from coali-

tion σj to σk, such that nj ≤ nk < n. Such move has several implications on the expected

(a) of Lemma 1 holds for every n ≥ 1 because 2v(n+1,2) + (v(n+1,2) − v(n+1,1)) = 1
β [2( 1

n+1 + · · ·+ 1
2 )− 1] > 0.

In fact, for any distribution F with a bounded support, the condition is always satisfied for large enough n,
because the difference v(n+1,1) − v(n+1,2) is strictly decreasing in n.
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payoffs of coalitions σk (now σ′k) and σj (now σ′j). For convenience, denote X ≡
∑

a∈σj\{i} Va,

and Y ≡
∑

a∈σk Va.

First, (i) the move of firm i from coalition σj to σk increases the two coalitions’ total

expected valuation, conditional on the event that either of them wins. This effect is the same

that underlies Proposition 1, so the same intuition we discussed in Section 2.4 applies.

Second, (ii) the move of firm i from coalition σj to σk decreases the price paid by the

winning coalition, conditional on the event that either of them wins. Again, for simplicity

assume that σj and σk are the only two coalitions on the market, so one of them wins for sure,

and the price is the realized valuation of the other coalition. Observe that the prices paid by

the winner before and after the move are min{X + Vi, Y } and min{X, Y + Vi}, respectively.

Along the same lines as before, adding the realization of Vi to the coalition that is less likely to

have the lower realization tends to reduce the minimum between the two values. In particular,

min{X + Vi, Y } first-order stochastically dominates min{X, Y + Vi}.
Third (iii), in the presence of other coalitions on the market, the move of firm i from

coalition σj to σk increases the probability of the event that either of the two coalitions wins.

This is because, as we already observed, max{X, Y + Vi} first-order stochastically dominates

max{X + Vi, Y }. Therefore, max{X, Y + Vi} has a better chance to generate the highest

realization on the market when other bidders are present.

Therefore, the move of firm i from coalition σj to coalition σk increases the two coalitions’

total expected valuation and decreases the price paid by the winning coalition conditional

on either of them winning the auction (effects (i) and (ii)). The move also increases the

probability of the event that either of the two firms wins (effect (iii)). Hence, it must be the

case that the move increases the joint expected payoffs of the two coalitions in the auction,

as Proposition 2 indeed guarantees.38,39

It is interesting to compare Proposition 1 and Proposition 2. In particular, Proposition 1

addresses coalition profiles’ efficiency and it guarantees that by moving firm i from coalition

σj to σk the winner’s expected valuation for the patent (i.e., the expected welfare) always

increases. This force corresponds solely to effect (i) listed above. When all coalitions (except

38Moreover, even if it is not relevant to our argument, the move for firm i from σj to σk changes the
probabilities of winning the auction of all other coalitions σh 6= σj , σk, as well as the expected price paid
conditional on any of them winning.

39The assumption 0 ∈ supp(F ) ensures that small coalitions can still win the auction with positive probabil-
ity. Otherwise, the strict inequality in Proposition 2 may not hold as small coalitions may get zero expected
payoffs regardless of how a firm may deviate from one coalition to another.
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at most one) reach size n, further aggregation of firms into larger coalition starts being socially

wasteful. This observation allows Corollary 1 to identify σ̃ as the most efficient coalition profile.

On the other hand, although Proposition 2 guarantees that stable coalition profiles cannot

include multiple coalitions smaller than n, it stops short of guaranteeing that the most efficient

profile σ̃ is stable. This is because stability involves additional effects besides (i): specifically,

once a coalition reaches size n, it could still have an incentive to add additional members in a

socially wasteful way to decrease the price paid in case it wins the auction, or to increase the

probability of winning. In other words, effects (ii) and (iii) can still be present if coalition σk

is (weakly) larger than n.

Corollaries 2 and 3 explore the implications of Proposition 2 on the set of stable coalition

profiles. They illustrate some necessary conditions for any coalition profile to be stable, which

we use in the next sections to study the seller’s revenue.

Corollary 2 (Small Coalitions) In both the limited-values and optimized-value cases, any

stable coalition profile can include at most one coalition strictly smaller than n.

Corollary 3 (Stable Coalition Profiles) In both the limited-values and optimized-value

cases, for any stable coalition profile σ = (σ1, . . . , σJ),

(a) if n = N , then σ is the grand coalition;

(b) if N
2
≤ n < N , then either (i) n ≤ n1 < N, and n2 = N − n1; or (ii) σ is the grand

coalition;

(c) if n < N
2

, then either (i) n1,.. nJ ≥ n; or (ii) n1,.. nJ−1 ≥ n and nJ < n.

By Corollary 2, a stable coalition profile cannot have more than one coalition strictly

smaller than n. Thus, if n = N , only the grand coalition can be a stable coalition profile

(Lemma 1 identifies sufficient conditions for it to be stable). If N
2
≤ n < N, there are not

enough firms to form three coalitions and still satisfy Corollary 2. Therefore, a stable coalition

profile can contain at most two coalitions, the (weakly) larger one must contain at least n

firms, and the smaller one the remaining ones. Finally, if n < N
2

, stable coalition profiles

can contain three coalitions or more, as long as all coalitions but one are weakly larger than

n–that is, nJ−1 ≥ n.
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To conclude, given the necessary conditions for stability illustrated in Corollary 3, a natural

question to ask is whether coalition profiles other than the grand coalition can be stable or

uniquely stable. The following example addresses this question in the limited-value case by

showing that a coalition profile with multiple coalitions can be in fact stable (the proofs of

claims (a) and (b) in Example 1 are in Section 6.3). Further examples of stable coalitions

profiles are presented in Section 6.1.

Example 1 (Stable Coalition Profiles) In the limited-value case, let N = 4, n = 2, and

σ̃ = (σ1, σ2) be such that n1 = n2 = 2.

(a) If V has an exponential distribution with parameter λ > 0, then both σ̃ and the grand

coalition are stable for any λ > 0.

(b) If V has a Gamma distribution (α, 1) with α = 1/4, then σ̃ is uniquely stable.40

Seller’s Revenue in the Limited-value Case

Next, we focus on the limited-value case, and we address the implications of Proposition 2 on

the seller’s expected revenue. First, consider the effect of moving one firm from a smaller to a

larger coalition on the seller’s expected revenue, when both coalitions are strictly smaller than

n. Despite the fact that such a move increases the two coalitions’ joint payoffs (as guaranteed

by Proposition 2), it is easy to build examples in which the move also benefits the seller.41

Nonetheless, the next result guarantees that moving a firm from a smaller coalition toward a

sizable one (i.e., larger than n) always reduces the seller’s expected revenue.

Lemma 2 (Effect of Concentration on Seller’s Revenue) In the limited-value case, let

σ be a coalition profile with σj, σk ∈ σ such that 0 < nj ≤ n ≤ nk. For any firm i ∈ σj,
let σ′ = (σ′1, . . . , σ

′
J) be such that σ′j = σj\{i}, σ′k = σk ∪ {i}, and σ′h = σh for h 6= j, k.

Then, R(σ) > R(σ′).

40As discussed in Section 4, the gamma distribution is convenient to study because the sum of k random
variables with a gamma distribution (α, 1) follows itself a gamma distribution (kα, 1). In fact, numerical
simulations suggest that the coalition profile σ̃ is uniquely stable for any sufficiently small α.

41To see this, consider a scenario in which N and n are both very large, and σ = (σ1, σ2, σ3), with σ2 = {i},
σ3 = {i′}, and σ1 = N\{i, i′}. For N and n large enough, σ1 wins the auction almost for sure and the seller’s
revenue is likely to be max{Vi, Vi′}. Upon a deviation of i′ from σ3 to σ2 we have σ′1 = σ1, σ′2 = {i, i′}, and
the seller’s revenue is likely to increase to Vi + Vi′ .
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If a firm i is moved from a coalition σj (weakly) smaller than n to a coalition σk larger

than n, the value distribution of coalition σj decreases (in a likelihood-ratio sense), but, as

coalition σk already includes n members, the value distribution of coalition σk is not affected

by the move. Therefore, firm i’s contribution effectively disappears from the auction, and

the seller’s expected revenue strictly decreases. Hence, from the seller’s perspective, profiles

involving one or more coalitions strictly larger than n are dominated by coalition profiles in

which any firm in excess of n is moved toward smaller coalitions, making the coalition profile

more even in sizes.

Recall that for any given N and n(≤ N), we denote the set of stable coalition profiles

by Σ∗(N,n). Also, because W(σ,m) is the m-th highest realization associated to the vector

(W1, ...,WJ), and w(σ,m) is its expected value, the expected revenue of the seller given σ is

R(σ) ≡ w(σ,2). Hence, the seller’s maximum expected revenue from a patent auction as a

function of N and n is defined by

R∗(N,n) ≡ max
σ∈Σ∗(N,n)

R(σ),

and R∗(N,n) ≡ 0 if Σ∗(N,n) = ∅. Next, we exploit the necessary condition of stable coalition

profiles characterized in Corollary 3, together with Lemma 2, to find the maximum revenue a

seller can raise through a second-price (or ascending) patent auction.

Proposition 3 (Seller’s Revenue in the Limited-Values Case) In the limited-value case,

(i) if n = N, R∗(N,n) = 0; (ii) if n < N, let K ≡ dN/ne , and consider the coalition

profile σ̃ ≡ {σ1, .., σK} with n1 = ... = nK−1 = n and nK = N − n(K − 1). Then,

R∗(N,n) ≤ R
∗
(N,n) ≡ w(σ̃,2).

If n = N, point (i) of Proposition 3 is an immediate consequence of part (a) of Corollary

3: if the grand coalition is the only coalition profile that can be stable, R∗(N,n) = 0. If

n < N ≤ 2n, by construction we have K = 2, and Proposition 3 is obtained observing that

Lemma 2 guarantees that among all the coalition profiles described in part (b) of Corollary

3, the profile σ̃ = (σ1, σ2) in which n1 = n and n2 = N − n1 is the one maximizing the seller’s

revenue. If N ≥ 2n+1, Lemma 2 guarantees that, among all coalition profiles described in part

(c) of Corollary 3, the one yielding the maximum potential revenue for the seller is formed by

the maximum possible number of coalitions of size n, and the remaining firms allocated in one
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smaller coalition. This profile corresponds to σ̃ in Proposition 3, and the revenue generated

by it is w(σ̃,2). Therefore, R
∗
(N,n) ≡ w(σ̃,2) represents an upper bound for the revenue that

the seller can generate across all stable coalition profiles. Finally, observe that σ̃ corresponds

to the coalition profile that maximizes the expected welfare value in Corollary 1.

In the context of second-price auctions, typically sellers are able to improve their expected

revenue by introducing a reserve price. In our setting, the introduction of a reserve price affects

the coalition-formation stage, and therefore it is substantially more difficult to evaluate from

the seller’s perspective. On one hand, coalition profiles including multiple small coalitions are

still not stable (it is easy to show that Proposition 2 is robust to the introduction of a reserve

price).42 On the other hand, firms aggregating into larger coalitions becomes more likely to

occur in stable coalition profiles. This is because unilateral deviations of firms considering

participating in the auction as single bidders are less likely to be profitable (because an

individual firm may face a very small probability to obtain a value realization above the

reserve price). This effect tends to hurt the seller’s revenue.

Although studying the implications of a reserve price as well as identifying the optimal

one is beyond the scope of this article, in our setting the seller has an alternative design tool

to influence the coalition-formation stage and the auction outcome, which is much simpler to

evaluate. Specifically, the seller can impose bounds on coalitions’ sizes that potential bidders

must satisfy to be allowed to participate in the auction. In fact, Propositions 1, 2, and 3 allow

us to derive a precise auction design recommendation that allows both the social planner to

achieve the maximum expected welfare value, and the seller to obtain the upper bound w(σ̃,2)

identified in Proposition 3. In Corollary 4, we show that, when n < N, if, before coalitions

form, the seller imposes a ceiling (i.e., a maximum) equal to n to the bidding coalitions’

size, coalition profile σ̃ becomes uniquely stable, allowing both the upper bound identified in

Proposition 3 to be obtained by the seller as auction’s revenue, and the expected welfare to

be maximized.43

Corollary 4 (Ceiling on Coalitions’ Size) In the limited-value case, let n < N. If the

42To see this, observe that the proof of Proposition 2 remains unchanged if we redefine Z ′ ≡
max

{
maxh6=j,k

∑
a∈σh

Va, r
}
, where r is a reserve price.

43Although Lemma 2 guarantees that in the limited-values case setting the ceiling at n clearly dominates
setting it at any higher level, setting a ceiling below n could generate even higher expected revenues for the
seller. Indeed, a ceiling below n generates a larger number of smaller bidding coalitions, each with a lower
value distribution (in a first-order stochastic sense). Whether this turns out to be beneficial for the seller
depends on the specific distribution F.
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seller allows only coalitions of size up to n to participate in the auction, σ̃ is uniquely

stable, and it generates the revenue R
∗
(N,n).

Seller’s Revenue in the Optimized-value Case

We now turn to the implications of the results in Section 3.1 on the seller’s expected revenue

in the optimized-value case.

The consequences of optimized values on the set of stable coalition profiles are two-fold.

First, consider a firm deviating from coalition σj to a larger coalition σk such that nj ≤ n ≤ nk.

In the limited-value case, such a deviation does not change σk’s valuation, although it decreases

σj’s valuation as well as its probability of winning the auction. As σj is less likely to win, all

other coalitions, including σk, are more likely to win (and they pay a lower price conditional

on winning). On the other hand, in the optimized-value case, such a deviation does increases

σk’s valuation. In fact, if coalitions have the ability to select the highest ones among all their

members’ realizations, even a coalition already larger than n can still improve its own value

distribution by adding more members (this is because by adding more members the coalition

will be able to select the n highest realizations among a larger number of draws). Also, as

σk’s valuation increases, the chances of σk winning the auction increase more than in the

limited-value case. This implies that deviations from a coalition to another that is larger than

n are more likely to be profitable than in the limited-value case. Therefore, firms have an

even stronger incentive to concentrate in larger coalitions than in the limited-value case.

Second, a firm’s deviation from a coalition σj such that nj ≥ n to a singleton is less likely

to be profitable than in the limited-value case, as the original coalition σj’s value distribution

is higher in this case. Both of these forces tend to make coalition profiles that include a small

number of large coalitions relatively stable.

Similarly to the limited-value case, the incentives for firms to concentrate into large coali-

tions are stronger for larger n. In fact, if n is small, coalitions tend to benefit less from the

acquisition of additional members. The following result shows that even if n = 1, and there-

fore the incentives to aggregate in larger coalitions are minimal, in the optimized-value case,

the grand coalition is uniquely stable, guaranteeing zero revenue for the seller.

Proposition 4 (Stability in the Optimized-Value Case) In the optimized-value case, as-

sume n = 1. Then, the grand coalition is uniquely stable.
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To summarize the implications of the optimized-value case on the seller’s revenue, observe

that, because any coalition (weakly) larger than n can still improve their value distribution by

adding more members, for any given coalition profile σ the expected bids of large coalitions are

going to be higher than in the limited-value case. Therefore, if several coalitions larger than

n coexist in a stable coalition profile, the seller may obtain a higher revenue. However, as the

firms’ incentives to consolidate in large coalitions are even stronger than in the limited-value

case, it is likely the case that the grand coalition becomes uniquely stable (as Proposition 4

suggests), yielding zero revenue to the seller, but, on the other hand, achieving the first-best

in terms of welfare value of the patent.

As in the limited-value case, setting a ceiling on the coalitions’ size at n can surely avoid the

grand coalition and guarantee a positive revenue for the seller. In fact, similarly to Corollary 4,

such ceiling would make the profile σ̃ uniquely stable, guaranteeing w(σ̃,2) as expected revenue

for the seller.44

4 Multi-License Auctions

In this section we study the implications of the IP’s owner auctioning off multiple licenses

rather than one patent. We compare the revenue generated by a multi-license auction to

the one generated by a second-price patent auction. We focus on the limited-value case

as the analysis in Section 3.3 suggests that the seller’s revenue tends to be lower in the

optimized-value case. Therefore, multi-license auction will tend to be optimal in a greater set

of environments in the optimized-value case.

If the seller opts for an auction of multiple licenses, he is able to choose the number of

licenses to sell. We assume that each firm can only participate in the auction individually,

because each license is going to be issued to one specific winning firm.45 Each firm i’s payoff

in the auction is:

44Still, in the optimized-value case this ceiling could be dominated by both lower and higher ones. To see
this, consider N = 102 and n = 50. Setting a ceiling at 50 results in the coalition profile σ̃ = (σ1, σ2, σ3)
with n1 = n2 = 50 and n3 = 2 being uniquely stable. Still, setting a ceiling at 51 may result in a coalition
profile σ′ = (σ′1, σ

′
2) with n′1 = n′2 = 51 being stable as well. Because in the optimized-values case the value

distributions of σ′1 and σ′2 are higher (in a first-order stochastic sense) than the ones of σ1 and σ2, depending
on the underlying distribution F , σ′ could increase the expected revenue of the seller.

45Firms may still decide to collude illegally to manipulate the auction’s price. We rule out this possibility
because this article focuses on transparent agreements to share patents legally. Naturally, considering the
possibility of such illicit agreements would lead the revenue generated by multiple licenses to decrease. We
also assume that licenses are non-transferable.

26



πi = Pr{i wins} × E [Vi − Pi | i wins] ,

where Pi is the price paid by i conditional on winning. The seller auctions off at most n

licenses, as any additional license would be valued zero by all firms. For each choice of

selling k ≤ n licenses, we assume that the seller holds a (k + 1)-th price auction, which

is well-known to be revenue-equivalent to a large class of standard multi-unit auctions (see

Harris and Raviv, 1981, Weber, 1983, and Maskin and Riley, 1989).46 The expected revenue

from selling k(≤ n) licenses is kv(N,k+1). Therefore, the seller’s revenue from a multi-license

auction is Rlic ≡ maxk≤n kv(N,k+1), and we have Rlic ≥ nv(N,n+1)–that is, the expected revenue

generated by selling exactly n licenses at the uniform price of the (n + 1)-th order statistic

among N draws from the distribution F represents a lower bound for the revenue generated

by a multi-license auction.

The comparison between the revenue raised by a patent auction and the one raised by

a multi-license auction in general depends on the distribution F . To get some intuition,

suppose that N = Kn for some K ∈ Z+. As seen above, a lower bound for the revenue

raised by a multi-license auction is identified by nv(N,n+1). The upper bound of the patent

auction revenue identified in point (ii) of Proposition 3 is the seller’s expected revenue when

firms form K coalitions of size n. If the n firms with the highest ex-post realizations happen

to be consolidated in one group, the seller’s revenue can be at most
∑n

i=1 V(N,n+i), which is

clearly below the lower bound of the multi-license auction revenue. When the firms with the

ex-post highest realizations happen to be separated into different coalitions, the revenue’s

comparison depends on the distribution F . Consider for example the case N = 4 and n = 2.

If the seller decides to opt for a multi-license auction, the revenue is at least 2V(4,3). In the

patent-auction case, consider two coalitions of size n = 2. Ex-post, the two firms with highest

realizations are equally likely to be in either one coalition or separate coalitions. In the first

case, the seller’s revenue will be V(4,3) + V(4,4), which is strictly lower than 2V(4,3). In the

second case, the seller’s revenue is equally likely to be either min{V(4,1) + V(4,4), V(4,2) + V(4,3)}
or min{V(4,1) + V(4,3), V(4,2) + V(4,4)} = V(4,2) + V(4,4). The seller’s revenue from the patent

46Conditional on bidders’ i.i.d. private valuations and single-unit demands, revenue equivalence holds for
any standard multi-unit auction, either sequential or sealed-bid, uniform-price or discriminatory (in the case of
uniform-price either k-th price or (k+1)-th price). Note that our externalities’ structure (there are no negative
externalities to non-adopters) guarantees that firms have a single-unit demand for licences. Otherwise, firms
may have an incentive to bid for multiple licenses to preemptively limit the adoption of the IP.
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auction would dominate 2V(4,3) when the distribution F is right-skewed, so that V(4,1) and

V(4,2) tend to be significantly larger than V(4,3).
47 In addition, the patent auction is less likely

to be optimal for large K(= N/n), because firms with relatively high ex-post realizations

tend to be more spread out in coalitions with mid- to low- valuation firms, decreasing the

second-order statistics among the coalitions’ total value realizations, and therefore the seller’s

revenue.

These considerations suggest that (i) for a large set of parameters and distributions F,

the seller is better off selecting a multi-license auction over a patent auction; (ii) a patent

auction has the best chance to be optimal if the value distribution is relatively right-skewed,

and if K(= N/n) is relatively small (n is large relative to N).

To illustrate these intuitions numerically, we consider the case of valuations distributed

according to a Gamma distribution–that is, Vi ∼ Gamma(α, β) for each i ∈ N . In the case of a

Gamma distribution, the convolution of n random variables Vi is another gamma distribution∑n
i=1 Vi ∼ Gamma(nα, β).48 Therefore, the expected revenue from a patent auction in which

bidders form K coalitions of size n, each with valuation
∑n

i=1 Vi, can be expressed as an

expectation of the second order statistics of K draws from the distribution Gamma(nα, β).

To allow for comparative statics with respect to the skewness of the distribution, we choose

β =
√
α, hold V ar[Vi] = α

β2 fixed, and increase α to decrease the skewness 2√
α

.49

Figure 1 summarizes the revenue comparison for a range of different parameter values.

The dots in the figure identify markets (each defined by (n,N = Kn)) in which nv(N,n+1)

(the revenue generated by an auction to sell n licenses) is (weakly) larger than the expected

second order statistic of K draws from the distribution Gamma(nα, β) (the revenue generated

by a patent auction with K coalitions of size n). The results support the intuitions (i) and

47Recall however that we are comparing a lower bound of the multi-license auction revenue and an upper
bound of a patent auction: if F is severely right-skewed, the seller can decide to sell fewer than n licenses
in a multi-license auction, therefore increasing revenue of the multi-license auction with respect to the lower
bound.

48This property makes a Gamma distribution a particularly tractable one to work with in our setting. Note
that for Gamma’s distributions Myerson’s regularity condition holds for α ≥ 1. Therefore, for α < 1 the
multi-licences auctions we are discussing are not guaranteed to be the optimal mechanism to sell multiple
objects. However, they are still revenue-equivalent to any other format of multi-object auction with the same
virtual surplus and empirically relevant for the purpose of our application. Maskin and Riley (1989) discuss
the generality of revenue equivalence for multi-object auctions and characterize the optimal mechanism when
Myerson’s regularity condition is not satisfied.

49Although the expectation E[Vi] = α
β = α√

α
=
√
α is also increasing, the scale of the private valuations is

irrelevant in the revenue comparison across different auction schemes.
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(ii) above. Observe that the revenue generated by a multi-license auction dominates the one

generated by a patent auction in most markets. When the distribution of private valuations

is relatively right-skewed (i.e., α is smaller) the difference between the highest realizations

and the other realizations is relatively large. In this scenarios, a patent auction has the best

chance to generate larger revenues than the multi-license auction, particularly whenK(= N/n)

is small.

5 Conclusion and Discussion

In this article we study and compare alternative ways to sell IP rights or other goods that are

non-rivalrous but excludable (“club goods”). If a patent is sold in a second-price (equivalently,

ascending-price) auction, we analyze the potential emergence of coalitions of firms intended

to participate in the auction as individual bidders. We illustrate the impact of such coalitions

on the seller’s revenue as well as on social welfare, we illustrate the social and private benefits

of imposing a ceiling on the coalitions’ sizes, and we compare the auction outcomes to the

revenue generated by selling multiple licenses instead.

Joint Deviations

In our analysis we have adopted a relatively weak stability notion, which restricts the potential

deviations to unilateral ones only. This stability concept is well-suited for our application:

because the auction unfolds in a non-cooperative way, modeling the group-formation stage

in the same way guarantees internal consistency in our game. Nonetheless, it is interesting

to explore the consequences of allowing for joint deviations on our results. In the optimized-

value case, it is possible to show that allowing for any kind of joint deviations would always

yield the (efficient) grand coalition as a unique stable partition.50 In the limited-value case,

allowing joint deviation would in general require conditions stronger than the ones described

in part (a) of Lemma 1 for the grand coalition to be stable. That would sometimes yield

environments in which the grand coalition is uniquely stable (as in the scenarios illustrated

in part (a) of Example 1). On the other hand, it would still be possible to find environments

in which coalition profiles other than the grand coalition are stable, and sometimes uniquely

50In particular, we allow for joint deviations in which any set of firms belonging to a coalition can form a
new coalition by themselves, or migrate together to another coalition. This result is available in the Online
Appendix.
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stable. To see it, consider the examples illustrated in part (b) of Example 1. It is easy to

verify that the result is robust to the possibility of joint deviations.

Further Research

Several extensions are left to further research. It would be interesting to explore the potential

implementation of a first-price auction, and compare both the stable coalition profiles and the

seller’s revenue of the two auction formats.

In addition, one can consider an alternative timing in which coalitions form first, and then

the seller chooses the auction mechanism based on the observed coalition profile. Further

exploration in this direction would require firms to forecast the optimal auction mechanism

selected by the seller in the coalition-formation stage. A small literature has explored the

optimal auction mechanism based on particular profiles of (asymmetric) bidders (see Bulow

and Roberts, 1989, and Maskin and Riley, 2000a). In particular, Kirkegaard (2012) ranks

auction formats based on the properties of the values’ distributions in the case of two asym-

metric bidders. However, characterizing the optimal mechanism for a wide range of potential

coalition profiles with multiple bidders generates non-trivial complexities.

A second alternative timing option would be to consider a setting in which all firms’

valuations realize first, and then coalition formation takes place. In this alternative model it

would be possible to address questions such as whether firms with relatively high valuations

tend to aggregate into the same coalition, or they tend to divide into separate coalitions.

Naturally, solving this model would require to address potential strategic signaling occurring

during the negotiation stage, which would introduce significant changes to our environment.

Finally, it would be interesting to expand the range of externalities among the users of

the new technology. In this article, we considered the simple case in which no externalities

are present if the new technology is adopted by up to n firms, and no additional value is

generated if the adopters are more than n. In other words, the marginal returns of the new

technology are constant in the number of adopters up to n, and they are zero afterwards. One

could instead consider decreasing marginal returns in the number of adopters. In this case,

the tendency of firm to form large coalitions would depend on the rate at which the marginal

returns decrease. Along the lines of Proposition 2, if the rate of decrease of marginal returns

is not too high, it would still be beneficial for a firm to move from a smaller coalition to a

larger one. However, if the marginal returns decrease rapidly, that could not be the case and
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we should observe a larger number of small coalitions coexisting in stable coalition profiles.
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Appendix

Additional Examples of Stable Coalition Profiles

In this section we present two additional examples of coalition profiles that, similarly to

Example 1 in Section 3.1, are stable and different from the grand coalition.51

Example 2 This example illustrates that in the limited-value case, if the condition in

part (a) of Lemma 1 does not hold, then a coalition profile different from the grand coalition

can be uniquely stable. Consider N = 2, n = 1, and each firm’s valuation is either 3 with

probability 1/3, or 0 otherwise. Because the grand coalition always wins the auction and

makes no payment to the seller, the expected payoff from the grand coalition is E[V ] = 1,

i.e., the expected value of either firm’s valuation. If the two firms separate into individual

coalitions, we have σ = (σ1, σ2) with n1 = n2 = 1, and using the notation in the article, the

sum their expected payoffs is

E[max{V1, V2} −min{V1, V2}] = E[V(2,1) − V(2,2)].

It is easy to show that E[V(2,1)] = 3 · (1 − (2/3)2) = 5/3 and E[V(2,2)] = 3 · (1/3)2 = 1/3.

The total expected payoff from σ dominates the grand coalition’s because 4/3 > 1. Thus, σ

is uniquely stable.

Example 3 This example illustrates that in the limited-value case, coalitions profiles other

than the grand coalition may be stable along with the grand coalition, or uniquely stable.

Suppose N = 4, n = 2, and each firm’s valuation V has a Bernoulli distribution–that is,

its values are 1 or 0 with probability p ∈ (0, 1) and 1 − p, respectively. Then, the following

result holds:

Claim 1 Let σ = (σ1, σ2) be such that n1 = n2 = 2. The stable coalitions profiles are as

follows:

1. (i) If p < 1− 1√
2
, only σ is stable;

(ii) If 1− 1√
2
≤ p ≤ 1/2, only σ and the grand coalition are stable;

(iii) If p > 1/2, only the grand coalition is stable.

51Note that, in a slight deviation from the article’s main setup, these examples use distributions of V that
are not log-concave. The log-concavity assumption is used to show Proposition 2, although it is not necessary
for it to hold, as Examples 2 and 3 below illustrate.

32



Proof of Claim 1: Consider σ = (σ1, σ2) such that n1 = n2 = 2. We have,

π(σ2;σ) = p2
[
2(1− p)2 + 2p(1− p)

]
+ 2p(1− p)(1− p)2 (3)

= 2p[p(1− p)2 + p2(1− p) + (1− p)3].

which is obtained considering the scenarios in which σ2’s payoffs are strictly positive with their

corresponding probabilities. For example, if σ2’s valuation is 2, which occurs with probability

p2, then σ2’s profit (when strictly positive) can be either 2 or 1 because the valuation for σ1

can be 0 or 1 with probability (1− p)2 and 2p(1− p), respectively. Therefore, we have

π(σ1;σ) + π(σ2;σ) = 2π(σ2;σ) = 4p[p(1− p)2 + p2(1− p) + (1− p)3]. (4)

Observe that only two coalition profiles can arise from a unilateral deviation with respect

to σ, and they are σ′ = (σ′1, σ
′
2, σ

′
3) and σ′′ = {σ′′1 , σ′′2} such that (n′1, n

′
2, n

′
3) = (2, 1, 1) and

(n′′1, n
′′
2) = (3, 1), respectively. First, consider σ′, obtained by a firm i in σ2 deviating to form

σ′3 = {i}, and observe that

π(σ′2;σ′) + π(σ′3;σ′) = 2p(1− p)3.

This is because the only way for either σ′2 or σ′3 to obtain a strictly positive profit of 1 is for

σ′1’s valuation to be 0, which occurs with probability (1 − p)2, and for either σ′2 or σ′3 (but

not both) to have valuation 1, which occurs with probability 2p(1− p). From (3) and (4), it

is easy to verify that π(σ2;σ) > π(σ′2;σ′) + π(σ′3;σ′), implying that firm i’s deviation to σ′ is

not profitable.

Second, consider σ′′, obtained by a firm i in σ2 deviating to join σ1. We have

π(σ′′1 ;σ′′) + π(σ′′2 ;σ′′) = p2(2(1− p) + p) + 2p(1− p)2 + p(1− p)2 (5)

= p2(2− p) + 3p(1− p)2.

Because n = 2, coalition σ′′1 ’s valuation is 2 with probability p2. In this scenario, σ′′1 can get

strictly positive profits, either 2 or 1 with probabilities 1− p and p, respectively. If σ′′1 ’s value

is 1, which occurs with probability 2p(1− p), then σ′′1 ’s profit can be at most 1,which occurs

with probability 1 − p. Finally, with probability (1 − p)2, σ′′1 ’s value is 0, in which case, σ′′2

33



obtains a strictly positive payoff of 1 with probability p. From (4) and (5), we have

π(σ1;σ) + π(σ2;σ) ≥ π(σ′′1 ;σ′′) + π(σ′′2 ;σ′′) (6)

⇐⇒ 4p(1− p)2 + 4p2(1− p) ≥ 2p2(1− p) + p3 + 3p(1− p)2

⇐⇒ (1− p)2 + 4p2(1− p) ≥ 2p(1− p) + p2

⇐⇒ (1− 2p) ≥ 2p(1− p)− 4p2(1− p) = 2p(1− p)(1− 2p)

⇐⇒ 1− 2p ≥ 0 (because 2p(1− p) < 1).

Hence, σ is stable if and only if p ≤ 1/2.

Next, the expected profit of the grand coalition is

π(N ) = 2p2 + 2p(1− p) = 2p.

A firm i’s unilaterally deviation results in the coalition profile σ = (σ′′1 , σ
′′′
2 ) with n′′1 = 3 and

n′′2 = 1. Therefore, (5) implies

π(N ) ≥ π(σ′′1 ;σ′′) + π(σ′′2 ;σ′′) (7)

⇐⇒ 2 ≥ 2p2 − 4p+ 3

⇐⇒ 2(1− p)2 ≤ 1

⇐⇒ 1− 1√
2
≤ p.

Hence, the grand coalition is stable if and only if p ≥ 1− 1√
2
.

Consider now σ′′ = (σ′′1 , σ
′′
2) such that (n′′1, n

′′
2) = (3, 1). From (6), a necessary condition

for σ′′ to be stable is p ≥ 1/2. At the same time, from (7), a necessary condition for σ′′ to be

stable is p ≤ 1− 1√
2
. As 1− 1√

2
< 1/2, σ′′ is never stable.

Finally, as suggested by Proposition 2, it is easy to see that any profile involving two or

more singleton coalitions is not stable, which concludes the proof of Claim 1. �

References from Shaked and Shanthikunar (2007)

Some of the proofs presented in Section 6.2 below require some tools from the statistical

literature on stochastic orders. For ease of reference, here we provide a summary of these

results (see Shaked and Shanthikunar, 2007, for more detail).
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Let X and Y be two continuous random variables such that P (X ≥ x) ≤ P (Y ≥ x) for

all x. Then X is smaller than Y in the usual stochastic order (denoted X ≤st Y ). Similarly,

if X and Y have densities g and h, respectively, X is smaller than Y in likelihood-ratio

order (denoted by X ≤lr Y ) if g(x)h(y) ≥ g(y)h(x) for all x ≤ y. It is well known that

likelihood-ratio dominance implies stochastic dominance. With these definitions, we can state

the following theorems:

Theorem A1 (Shaked and Shanthikunar, 2007, Theorem 1.C.11) Let Xi, i = 1, 2, ...

be a sequence of non-negative independent random variables with log-concave densities.

Let M and N be two discrete positive integer-valued random variables such that M ≤lr
N , and assume that M and N are independent of Xi, i = 1, 2, ... Then,

M∑
i=1

Xi ≤lr
N∑
i=1

Xi.

Next, define Glr = {φ : R2 → R2 : φ(x, y) ≤ φ(y, x) whenever x ≤ y}. Then,

Theorem A2 (Shaked and Shanthikunar, 2007, Theorem 1.C.20) Let X and Y be

independent random variables. Then, X ≤lr Y if and only if

φ(X, Y ) ≤st φ(Y,X) for all φ ∈ Glr.

Theorem A3 (Shaked and Shanthikunar, 2007, Theorem 1.A.3) Let X1, X2, . . . , Xm

be a set of independent random variables, and let Y1, Y2, . . . , Ym be another set of in-

dependent random variables. If Xi ≤st Yi for i = 1, 2, . . . ,m, then, for any increasing

function ψ : Rm → R, one has

ψ(X1, X2, . . . , Xm) ≤st ψ(Y1, Y2, . . . , Ym).
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Proofs

Proof of Proposition 1: Let σ = (σ1, . . . , σJ) be a coalition profile such that 0 < nj ≤
nk < n. For any firm i ∈ σj, let σ′ = (σ′1, . . . , σ

′
J) be such that σ′j = σj\{i}, σ′k = σk ∪ {i},

and σ′h = σh for h 6= j, k. In the next steps, we show that S(σ′) > S(σ), or w(σ′,1) > w(σ,1).

Step 1 : We define

X ≡
∑

a∈σj\{i}

Va, Y ≡
∑
a∈σk

Va, and Z ≡ max
h6=j,k

∑
a∈σh

Va,

The expected welfare values of coalitions σ and σ′ are

w(σ,1) = E [max{X + Vi, Y, Z}] , and w(σ′,1) = E [max{X, Y + Vi, Z}] .

We use Theorems A1 and A2 in Section 6.1. As nk > nj − 1, by Theorem A1, we

have X ≤lr Y . To use Theorem A2, observe that, whenever x ≤ y, max{x + vi, y, z} ≤
max{y + vi, z} = max{x, y + vi, z}. Hence, for every realization of Vi = vi and Z = z,

E [max{X + vi, Y, z}] ≤ E [max{X, Y + vi, z}] ,

which implies

E [max{X + Vi, Y, Z}] ≤ E [max{X, Y + Vi, Z}] . (8)

Step 2 : We now find some realizations Vi = v∗ and Z = 0 such that

E [max{X + v∗, Y, 0}] < E [max{X, Y + v∗, 0}] .

Take any v∗ such that v∗ > 0, f(v∗) > 0, and Pr(Y ≥ X + v∗) ≥ 1/2.52 Observe that

max{x, y + v∗, 0} −max{x+ v∗, y, 0} =


v∗ if y − x ≥ v∗,
−v∗ if y − x ≤ −v∗,
y − x (> −v∗) if −v∗ < y − x < v∗.

Last, Pr(−v∗ < Y −X < v∗) > 0 because 0 ∈ supp(F ), so that the support of the distribution

of Y −X contains 0. Therefore,

E [max{X, Y + v∗, 0}]−E [max{X + v∗, Y, 0}] > v∗ (Pr(Y −X ≥ v∗)− Pr(Y −X < v∗)) ≥ 0.

Because the function max{x, y+ vi, z}−max{x+ vi, y, z} is continuous in vi and z, the above

strict inequality holds for every realization of Vi and Z near v∗ and 0, respectively. Inequality

52Such v∗ exists because Y ≥lr X+Vi which implies that Pr(Y ≥ X+Vi) =
∫
Pr(Y ≥ X+v)f(v)dv ≥ 1/2.
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(8) holds strictly because the log-concavity of f guarantees that distribution functions of Vi

and Z are continuous. �

Proof of Lemma 1: (a) In the limited values model, consider a firm i, let σ ≡ (N ) be the

grand coalition and σ′ ≡ (N\{i}, {i}). First, consider the case in which n = N . The payoff

of the winning coalition of the patent auction under the profile σ′ is max
{∑

a∈N\{i} Va, Vi

}
−

V(σ′,2). Because

max

 ∑
a∈N\{i}

Va, Vi

− V(σ′,2) ≤ max

 ∑
a∈N\{i}

Va, Vi

 ≤∑
a∈N

Va,

firm i would not unilaterally deviate from the grand coalition.

Suppose now that n < N . The payoff of the grand coalition σ is the sum of n value-

contributing firms’ private valuations. We generate the grand coalition’s payoff in two steps:

adding n + 1 draws from the distribution F and excluding one of the draws with the same

probability among all of them. Recall that we denote by V(n,m) the m-th highest value among

n draws from the distribution F, and that we denote by v(n,m) the expected value of V(n,m).

We have

π(N ;σ) =
1

n+ 1

n+1∑
i=1

(
v(n+1,1) + v(n+1,2) + . . . v(n+1,n+1) − v(n+1,i)

)
.

Consider now the coalition profile σ′. To obtain the coalitions’ payoffs associated with σ′, let us

consider n+1 draws from the distribution F and select among them, with the same probability,

one to be the valuation of firm i. Consider the case in which coalition {i}’s realization is the

highest among all draws (which happens with probability 1
n+1

). Conditional on this case, if

coalition {i} wins the patent auction, its payoff is V(n+1,1)− [V(n+1,2) + ...+V(n+1,n)], whereas if

coalition N\{i} wins the auction its payoff is [V(n+1,2) + ...+V(n+1,n)]−V(n+1,1). Therefore, the

winning coalition’s expected payoff is bounded above by
∑

j 6=2 V(n+1,j) − V(n+1,2). If coalition

{i} realizes the h-th highest valuation among all draws, with h 6= 1, coalition N\{i} wins the

auction and the winner’s expected payoff is
∑

j 6=h v(n+1,j)−v(n+1,h). Coalition {i} realizes each

of the h-th highest valuation among all draws, with h 6= 1 with probability 1
n+1

. Thus,

π(N\{i};σ′)+π({i};σ′) < 1

n+ 1

[∑
j 6=2

v(n+1,j) − v(n+1,2)

]
+

1

n+ 1

n+1∑
h=2

[∑
j 6=h

v(n+1,j) − v(n+1,h)

]
.
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Therefore, exploiting the condition in Lemma 1’s claim, we have

π(N ;σ)− [π(N\{i};σ′) + π({i};σ′)] > 1

n+ 1

(
n+1∑
h=3

v(n+1,h) − v(n+1,1) + 3v(n+1,2)

)
> 0,

which guarantees that the grand coalition is stable. (b) In the optimized values model the

grand coalition always achieves the maximum feasible payoff in this market, i.e., the sum of

the n highest valuations across all N firms on the market (i.e.,
∑n

i=1 V(N,i)). Therefore, it has

to be stable. �

Proof of Proposition 2: Step 1 : We define

X ≡
∑

a∈σj\{i}

Va, Y ≡
∑
a∈σk

Va, and Z ≡ max
h6=j,k

∑
a∈σh

Va,

and observe that

π(σj;σ) + π(σk;σ) = E [max{X + Vi, Y, Z} −max{min{X + Vi, Y }, Z}] , and

π(σ′j;σ
′) + π(σ′k;σ

′) = E [max{X, Y + Vi, Z} −max{min{X, Y + Vi}, Z}] .

Additionally, for any x, y, vi, z ≥ 0, we define

φ(x, y; vi, z) ≡ max{x+ vi, y, z} −max{min{x+ vi, y}, z}.

In the following Steps 2-3, we show that

E[φ(X, Y ;Vi, Z)] < E[φ(Y,X;Vi, Z)], (9)

which guarantees the claim of Proposition 2.

Step 2 : First, we use Theorems A1 and A2 (see Section 6.1) to obtain a weak version of

inequality (9). As nk > nj − 1, by Theorem A1, we have X ≤lr Y . To use Theorem A2,

observe that, whenever x ≤ y,

φ(x, y; vi, z) = max{x+ vi, y, z} −max{min{x+ vi, y}, z} and

φ(y, x; vi, z) = max{y + vi, z} −max{x, z}.

Hence, we have φ(x, y; vi, z) ≤ φ(y, x; vi, z). Then, for every realization of Vi = vi and Z = z,

EX,Y [φ(X, Y ; vi, z)] ≤ EX,Y [φ(Y,X; vi, z)],
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which implies that

E[φ(X, Y ;Vi, Z)] ≤ E[φ(Y,X;Vi, Z)].

Step 3 : We now find some realizations Vi = v∗ and Z = 0 such that

EX,Y [φ(X, Y ; v∗, 0)] < EX,Y [φ(Y,X; v∗, 0)].

Take any v∗ such that v∗ > 0, f(v∗) > 0, and Pr(Y ≥ X + v∗) ≥ 1/2.53 Then,

φ(x, y; v∗, 0) = max{x+ v∗, y} −min{x+ v∗, y} = |y − x− v∗| and

φ(y, x; v∗, 0) = max{y + v∗, x} −min{y + v∗, x} = |y − x+ v∗|.

Therefore,

φ(y, x; v∗, 0)− φ(x, y; v∗, 0) =


2v∗ if y − x ≥ v∗,
−2v∗ if y − x ≤ −v∗,
2(y − x) (> −2v∗) if −v∗ < y − x < v∗.

Last, Pr(−v∗ < Y −X < v∗) > 0 because 0 ∈ supp(F ), so that the support of the distribution

of Y −X contains 0. Therefore,

E[φ(Y,X; v∗, 0)− φ(X, Y ; v∗, 0)] > 2v∗ (Pr(Y −X ≥ v∗)− Pr(Y −X < v∗)) ≥ 0.

As φ is a continuous function of vi and z, the above strict inequality holds for every realization

of Vi and Z near v∗ and 0, respectively. Inequality (9) follows from the log-concavity of f ,

which guarantees that distribution functions of Vi and Z are continuous. �

Proof of Example 1 Consider a coalition profile σ = (σ1, σ2) with n1 = n2 = 2. Observe

that only two coalition profiles can arise from a unilateral deviation with respect to σ, and

they are σ′ = (σ′1, σ
′
2, σ

′
3) with (n′1, n

′
2, n

′
3) = (2, 1, 1),and σ′′ = {σ′′1 , σ′′2} with (n′′1, n

′′
2) = (3, 1).

(a) Suppose that V ∼ exp(λ), λ > 0. Recall that the condition in part (a) of Lemma

1is always satisfied for V ∼ exp(λ) for any λ ≥ 0 and n ≥ 1. Therefore, the grand coalition

is always stable. Consider now σ, and observe that Proposition 2 guarantees that, given σ,

deviating to form a new coalition {i} is never a profitable deviation for any firm. Second,

consider a firm i in σ2 unilaterally deviating to join σ1, to obtain the new coalition profile σ′′.

Without the deviation, we have54

π(σ1;σ) + π(σ2;σ) =

∫ ∞
0

∫ ∞
0

|x− y|
(
λ2xe−λx

) (
λ2ye−λy

)
dydx =

3

2λ
,

53Such v∗ exists as Y ≥lr X + Vi which implies that Pr(Y ≥ X + Vi) =
∫
Pr(Y ≥ X + v)f(v)dv ≥ 1/2.

54Recall that the sum of two exponentially distributed random variables with parameter λ has a distribution
with density f(x) = λ2xe−λx.
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whereas if firm i deviates we have

π(σ′′1 ;σ′′) + π(σ′′2 ;σ′′) =

∫ ∞
0

∫ ∞
0

|x− y|
(
λ2xe−λx

) (
λe−λy

)
dydx =

3

2λ
.

Therefore, the unilateral deviation to join σ1 is not strictly profitable, which guarantees the

stability of σ.55

(b) Suppose that V ∼ Γ (α, 1) with α = 1/4. As before, Proposition 2 implies that, given

the coalition profile σ, forming an individual coalition {i} does not represent a profitable

deviation for any firm i. Moreover, we have

π(σ1;σ) + π(σ2;σ) =

∫ ∞
0

∫ ∞
0

|x− y|e
−xx2a−1

Γ(2a)

e−yy2a−1

Γ(2a)
dxdy = 0.63662,

π(σ′′1 ;σ′′) + π(σ′′2 ;σ′′) =

∫ ∞
0

∫ ∞
0

|x− y|e
−xx2a−1

Γ(2a)

e−yya−1

Γ(a)
dxdy = 0.545096, and

π(N ) = 0.5.

Hence, the coalition profile σ is uniquely stable, which concludes the proof of Corollary 3. �

Proof of Lemma 2: In the limited-value case, consider a coalition profile σ = (σ1, .., σJ)

with nj ≤ n ≤ nk. Let (W1,W2, . . . ,WJ) denote the associated coalitions’ valuations. Firm

i’s move from coalition σj to σk results in another coalition profile σ′ = (σ′1, σ
′
2, . . . , σ

′
J) with

σ′j = σj\{i}, σ′k = σk ∪ {i}, and σ′h = σh for h 6= j, k.

It is without loss to assume that coalition σ′k selects n existing members, but not firm i,

to form the coalition valuation W ′
k. Then, coalition σ′k’s valuation W ′

k is identical to Wk. It

follows that, for the coalition profile σ′, the coalitions’ valuations (W ′
1,W

′
2, . . . ,W

′
J) are such

that W ′
j = Wj − Vi, and W ′

h = Wh for every h 6= j. Because every coalition bids their own

valuation, the second highest bid under σ′ is (weakly) lower than the second highest bid under

σ for every realization valuations, and strictly lower for some realizations in which Wj is the

second highest bid under σ and Vi > 0. �

Proof of Proposition 3: (i) If n = N , only the grand coalition can be stable; (ii) if

n < N ≤ 2n, from Corollary 2, it is immediate to see that σ = {σ1, σ2} with n1 = n, and

n2 = N−n yields the maximum potential revenue for the seller. Therefore, R∗(N,n) ≤ w(σ̃,2),

and the bound is attained if σ is stable; (iii) if N ≥ 2n + 1, for any stable coalition profile

55Note tha the expected profit of the grand coalition is π(N ) = 2
λ >

3
2λ ,which immediately guarantees the

stability of the grand coalition without invoking Lemma 1.

40



σ′ = (σ′1, . . . , σ
′
J), Corollary 2 implies that n1 ≥ · · · ≥ nJ−1 ≥ n. The total value of each

coalition σ′j is W ′
j ≡

∑min{njn}
i=1 Vi. Let W ′

j ≡ 0 for j = J + 1, J + 2, . . . , K. Similarly, let Wk

denote the value of each coalition of σk in the coalition profile σ̃ defined in the claim. Then,

for every k = 1, 2, . . . , K, we have W ′
k ≤lr Wk, which implies W ′

k ≤st Wk. Observe that a

function that finds the second highest number from a vector of integers is increasing in each

argument. It follows from Theorem A3 that W(σ′,2) ≤st W(σ̃,2). Therefore, R∗(N,n) ≤ w(σ̃,2),

and the bound is attained if σ̃ is stable �

Proof of Corollary 4: Points (b) and (c) of Corollary 2 imply that in the presence of

a ceiling the coalition profile σ̃ is the only remaining candidate to be stable. For it to be

stable, we need to guarantee that (i) if nK < n, no firm belonging to a coalition of size n has

a profitable deviation in joining σK ; (ii) if nK < n, no firm belonging to σK has a profitable

deviation in participating in the auction as individual bidder, and (iii) no firm belonging to

a coalition of size n has a profitable deviation in participating in the auction as individual

bidder. However, in the proof of Proposition 2, we defined

X ≡
∑

a∈σj\{i}

Va, Y ≡
∑
a∈σk

Va, Z ≡ max
h6=j,k

∑
a∈σh

Va,

and for any x, y, vi, z ≥ 0,

φ(x, y; vi, z) ≡ max{x+ vi, y, z} −max{min{x+ vi, y}, z}.

We showed that

E[φ(X, Y ;Vi, Z)] < E[φ(Y,X;Vi, Z)].

This result holds for any nj > 0,and in particular for nj = 1 (in this case, note that

X = 0).The result guarantees that (i), (ii), and (iii) do not represent profitable deviations in

the coalition profile σ̃. Therefore, in the presence of a coalitions’ size ceiling equal to n, the

coalition profile σ̃ is uniquely stable and the upper bound for the seller’s expected revenue

w(σ̃,2) is uniquely obtained. �

Proof of Proposition 4: Let σ = (σ1, σ2, . . . ) be a coalition profile such that n1 ≥ n2 ≥ 1.

For any i ∈ σ2, let σ′ = (σ′1, σ
′
2, . . . ) be such that σ′1 = σ1 ∪ {i}, σ′2 = σ2\{i}, and σ′k = σk for

k 6= 1, 2. Then,

π(σ1;σ) + π(σ2;σ) < π(σ′1;σ′) + π(σ′2;σ′) (10)
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is sufficient to show that σ = {N} is the only stable coalition profile. To show (10), we apply

a modified proof of Theorem A1 (see Section 6.1). Define

X ≡ max{Vj | j ∈ σ2\{i}}, Y ≡ max{Vk | k ∈ σ1}, and Z ≡ max{Vk | k /∈ σ1 ∪ σ2}.

LetX ′ ≡ max{X, Vi} and Y ′ ≡ max{Y, Vi}. Also, for any x, y, vi, z ≥ 0, define x′ ≡ max{x, vi}
and

φ(x, y; vi, z) ≡ max{x′, y, z} −max{min{x′, y}, z}.

Then,

π(σ1;σ) + π(σ2;σ) = E[φ(X, Y ;Vi, Z)], and

π(σ′1;σ′) + π(σ′2;σ′) = E[φ(Y,X;Vi, Z)].

Note that, for any Vi = vi and Z = z, we have

φ(x, y; vi, z) = max{x′, y, z} −max{min{x′, y}, z},

φ(y, x; vi, z) = max{y′, x, z} −max{min{y′, x}, z},

and whenever x ≤ y, we have

φ(y, x; vi, z)− φ(x, y; vi, z) = max{min{x′, y}, z} −max{x, z} ≥ 0. (11)

If X = 0 (i.e., n2 = 1), then

φ(y, 0; vi, z)− φ(0, y; vi, z) = max{min{vi, y}, z} − z ≥ 0,

with a strict inequality for some y, vi, z. In this case, (10) follows from the continuity of φ.

Suppose instead that X 6= 0 (i.e., n2 > 1). Note that the density functions of X and Y

are

FX(x) ≡ Pr(V(n2−1,1) ≤ x) = F n2−1(x) =⇒ fX(x) = (n2 − 1)F n2−2(x)f(x),

FY (y) ≡ Pr(V(n1,1) ≤ y) = F n1(y) =⇒ fY (y) = n1F
n1−1(y)f(y).

The likelihood ratio fY (x)
fX(x)

= n1

n2−1
F n1−n2+1(x) is strictly increasing in x ∈ supp(F ), i.e.,

fX(x)fY (y) > fX(y)fY (x), for all x < y.
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Note that, for any Vi = vi and Z = z,

EX,Y [φ(Y,X; vi, z)]− EX,Y [φ(X, Y ; vi, z)]

=

∫
y

∫
y≥x

(φ(y, x; vi, z)− φ(x, y; vi, z))fX(x)fY (y)dxdy

+

∫
y

∫
y≤x

(φ(y, x; vi, z)− φ(x, y; vi, z))fX(x)fY (y)dxdy.

We can rewrite the last term as∫
y

∫
y≤x

(φ(y, x; vi, z)− φ(x, y; vi, z))fX(x)fY (y)dxdy

=

∫
x

∫
y≤x

(φ(y, x; vi, z)− φ(x, y; vi, z))fX(x)fY (y)dydx

=

∫
y

∫
x≤y

(φ(x, y; vi, z)− φ(y, x; vi, z))fX(y)fY (x)dxdy.

Then,

EX,Y [φ(Y,X; vi, z)]− EX,Y [φ(X, Y ; vi, z)]

=

∫
y

∫
y≥x

(φ(y, x; vi, z)− φ(x, y; vi, z))(fX(x)fY (y)− fX(y)fY (x))dxdy ≥ 0. (12)

For some x, y, vi, and z, the inequality (11) holds strictly. Because φ is continuous, (12)

holds strictly in a neighborhood of (vi, z), which guarantees (10) to hold. �
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