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Overview Lectures:

1. Introduction to production/cost analysis

2. Estimating Production Functions I (Olley Pakes)

3. Estimating Production Functions II (OP Extensions)

4. Examples of applications



Introduction

I The focus is on the estimation of production and cost functions as tools
to analyze firm performance. In this respect it is an important part of IO,
but got divided into subfield and into other fields.

I All of the models will rely on symmetric information, and we will discuss
the primitive on the supply side: productivity.



Estimation of OP model

I They start out with a homogeneous good producer with a Cobb-Douglas
(value added) production function (in logs)2

yit = β0 + βl lit + βkkit + ωit + ηit (1)

I Here η is defined to be part of the error that is not known when input
decision are made, whereas ω is crucially observed by the firm (not by the
econometrician).

I Bias in coefficient using OLS: simultaneity especially in labor (no material
here!).

I Selection bias due to E(ωt |ωt > ω(kt), ωt−1, χt = 1). Conditional on ωt−1

this function is decreasing in kt−1. I.e. the value function is increasing in
both, so if k is higher we will continue with a lower ω. This would lead to
a negative capital coefficient bias.

2The model has age as an input as well, I will drop this and just keep it in
investment proxy to show that one can include other observed variables as states to
further control.



Estimating labor: stage 1

I OP work on condition that we can invert investment policy function
that is solution to the dynamic problem outlined before. There is
actually a bit of work to proof this (see Pakes, 1994).

it = it(kt , ωt , at) (2)

ωt = ht(it , kt , at) (3)

I where we now have a model that proxies (controls for) productivity
and note the time subscript, i.e. market structure. Now we can
substitute this into the production function and collect terms on
capital, investment into non parametric function φt(.).

yit = βl lit + φt(iit , kit , ait) + ηit (4)

where φt(it , kt , at) ≡ β0 + βkkit + ht(iit , kit , ait)

I We simply estimate this as a partial linear model (Robinson, 1988)
and get estimate for βl and φit . Practically, just use polynomial
expansion in state variables or use LWLS.



Selection control: stage 2

I We now want explicitly control for non random exit of firms, i.e. firms
with lower productivity (conditional on capital stock) have higher
probability to exit the market. Or

Pr(χt+1 = 1|ωt+1(.), Jt) = Pr(ωt+1 > ωt+1(.)|.) (5)

= 1− F (ωt+1(.)|ωt) ≡ Pt(it , at , kt) = Pit (6)

I This is again a non parametric function of the exit probability in the state
variables (generated by the model) and we can estimate this using kernel
estimation techniques or probit in polynomial of state variables. This will
generate estimate for Pit .



Estimating fixed input coefficients βk : stage 3

I We now have the following estimates (bl , φ̂it , P̂it) and let us consider one
period ahead, where we realize that this is only observed for surviving
firms (Exit rule!). This implies that we know that

E(yt+1 − βl lt+1|at+1, kt+1, χt+1 = 1) = β0 + βkkt+1 + E(ωt+1|ωt , χt+1 = 1)
(7)

I where now we will use the non parametric evolution of the productivity
process, i.e. an AR(1) for ω would be a special case. We have that

E(ωit+1|ωt , χt+1 = 1) = (8)∫
ωt+1

ωt+1
F (dωt+1|ωt)∫

ωt+1
F (dωt+1|ωt)

(9)

≡ g(ωt+1, ωt) = g(Pit , φit − βkkit) (10)



3rd stage

I Now using the Markovian assumption and its implication for expected
productivity into the production function one period ahead, subtracting
the know variation in labor (or whatever the input is you are estimating in
the first stage).

yt+1 − bl lt+1 = c + βkkt+1 + g(P̂it , φ̂it − βkkit − β0) + ξit+1 + ηit+1 (11)

I where crucially ξ is the innovation in the Markov process of productivity,
this is exactly what forces us to use a first stage to estimate labor since
ωit = g(ωit−1) + ξit and induces correlation between labor and
productivity, when labor is optimally chosen each period.

I Labor can respond to ξ and therefore l is a function of it, that is why we
need to subtract it out.

I Questions:

1. Think about what if labor has adjustment cost and is a dynamic
input.

2. What if doing RD impacts future productivity (probabilistic vs
deterministic)?



Implementing 3rd stage

I We will estimate this equation using NLLS while using a series
approximation, say order 4 (typically you expand until no change).

I Recall that from the first stage we have an estimate for φit = yit − bl lt ,
which no longer includes η due to estimation. Under the model’s structure
measurement error is purged.

I Estimating capital coefficient (or any coefficient of an input that has
dynamics!) on the following

yt+1 − bl lt+1 = β0 + βkkt+1 +
4−s∑
r=0

4∑
s=0

P̂ s
it(φ̂it − βkkit)r + ξit+1 + ηit+1 (12)

I Apply NNLS with OLS starting values to search for βk , in stata nl for
instance.



Alternative estimation: GMM

I Alternatively we can estimate the capital coefficient with GMM and
rely on only one moment, while adding and testing for
overidentifying restrictions.

I Introduce method here as will be useful for later (LP, ACF, DL)

I From first stage we have an estimate of productivity given parameter
βk

ωit(βk) = φit − βkkit (13)

I Relying on productivity evolution process, ωit+1 = g(ωit) + ξit+1, we
can recover ξit+1(βk) by non parametrically regressing ωit+1 on ωit .

I Now we have ξit+1(βk) and can form moments to identify βk

E

{
ξit+1(βk)

(
kit+1

kit

)}
= 0 (14)



Alternative proxy estimators

I We will now turn to recent modifications and extensions of the
OP-estimator. A very good handbook chapter on this is Ackerberg,
Benkard, Berry and Pakes (2007).

I We cover the Levinsohn and Petrin (2003, LP henceforth), the Ackerberg,
Caves and Frazier (2006, ACF henceforth) extensions.



Issues

I Monotonicity of investment: modifications of OP require revisiting
proof.

I Investment is lumpy and reduces sample size (efficiency), i.e.
economic reality.

I Adjustment costs in labor and therefore dynamics in labor.

I Identification in LP and OP: what variation is left conditional on
proxy.



LP proxy estimator

I The OP estimator crucially relies positive investment data for firms in a
given industry. In most developing countries this data is hard to come by.
Furthermore, even in developed regions we might see lumpy investment
and therefore a reduction in sample size and question of which firms we
can analyze.

I Technical comment. We can use only-investment sample to estimate true
underlying parameters and force them on entire sample when computing
productivity. If we want to rely on cleaner measures of productvity we can
only use restricted sample ωit = φit − βkkit .

I LP estimator replaces investment policy function by a static intermediate
input demand equation, monotonicly increasing in productivity and
proceed from there.

I We will revisit issues with this estimator later (assumptions on
competition, identification).



Estimator

I The estimation procedure is identical to OP, except for a different control
function. We can rely on simple static profit maximization to establish the
following condition.

mt = mt(ωt , kt) (15)

I This paper relies on a monotonic increasing function in ω to invert
equation and have the unobserved state as a function of two observables.
Assumes perfect competition.



I We can now rely on a similar approach

ωt = ht(kt ,mt) (16)

I Simply substitute this in for productivity term and in case of a sales
generating production function recover estimate on materials in a third
stage.

I we estimate first stage as

yit = βl lit + φt(mit , kit) + ηit (17)

I Second (or third if we do selection control which is different as well) stage
is similar to GMM implementation of OP 3rd stage. Now, a moment
condition on capital is formed, E(kit+1ξit+1).

I Write down the estimation algorithm for a sales generating production
function, and establish the moment conditions for estimating (βm, βk)



Problems of identification

I We will rely on the ACF paper to talk through some of the identification
problems proxy estimators may suffer from.

I The assumption on perfect competition is key and can be relaxed but
important for approach in LP (invertibility of m requires that as ω
increases so does m).

I Immediate problem of collinearity between l and m.

I What if labor has adjustment costs as well, i.e. a dynamic input. Then
labor is part of the state space.

I Towards a general way of dealing with all this issues is ACF.



ACF

I The main point of ACF is about realizing that every input into the
production function can be partioned into

1. a fixed or variable input, that is whether it is correlated with the
current shock in ω, ξ. If the input is variable, but static, we can
estimate them in the first stage.

2. a dynamic or static input, whether they are a state variable in the
dynamic model or not. If they are state variables, then investment
decisions depend on them, and their coefficients cannot be identified
without the third stage (like capital or age!). We could have all
inputs be dynamic and therefore have it = it(kt , lt ,mt , ωt).



Relaxing assumptions on inputs

I Let us start with an inversion of productivity to investment conditional on
the state variables of the problem.

I ACF note the two dimensions to every input (variable/fixed and
static/dynamic) and it will have implications for the properties of the
estimator. Let us consider a general case where we have one of each of
the four possible inputs.

yit = β0 + βvsxvs
it + βvdxvd

it + βfsx fs
it + βfdx fd

it + ωit + ηit (18)



Interpretation and identification

I In the original OP model, labor was xvs and can be estimated in the first
stage whereas capital was x fd and had to be estimated in a second stage
relying on E(kit+1ξit+1) = 0. Note that we could also consider instruments
in GMM approach and there we could include lt and kt+1,kt , respectively
as instruments for βl and βk

I Coefficients on xvd cannot be identified in a first stage but can be
estimated in second stage relying on instrument xvd

t−1.

I Lastly, coefficients on fixed but static inputs can be estimated in a first
stage. Which input would satisfy this condition?



testing

I Technical comment. Once there is a static or fixed input, we have
overidentifying restrictions. This can be potentially interesting in
testing some of the input timing assumptions. For instance, start
with capital as a fixed dynamic input and use both kt+1 and kt .
Now test overidentifying restriction and kt is only valid instrument if
capital is fixed (other instrument always valid), rejection of
specification might be evidence on capital’s fixedness.



Identification in 1st stage

I ACF further discuss the plausibility of the underlying data generating
process for identification in OP and LP. The essential argument lies in the
timing of inputs (l,m) with respect to shocks in productivity.

I Under the assumption that labor is indeed variable and static, in order for
it to have independent variance, there must be a variable zit that impacts
the firms’ choices of labor lit , but does not impact the investment choice
iit .

I Therefore zit must have some variance that is independent of (k, ω). If
this were not the case, we would have that lit = f (ωit , kit), and therefore
perfect collinearity between l and φ(.) and no identification of βl .



I So in order to follow the OP procedure, we need

lit = f (ωit , kit , zit) (19)

I where zit are additional factors that impact labor demand with nonzero
conditional variance.

I Note that zit cannot be serially correlated or it would end up in the state
space. As long as it is unobservable, it will break inversion. If observable,
still problematic as it is part of φ(.).



Possible z variables

I We can come up with two different candidates for zit to have
identification:

1. input price differences across plants that are iid. This is at odds with
other assumption in model that prices are given to all firms

2. iid random draws to the environment that cause differences in the
variance of ηit over time. Like upcoming strikes, machine breakdown,
maintenance periods.

I ACF propose solution to this and show identificaton of OP under a
slightly different timing assumption. The argument revisits Nadiri and
Rosen (1974) on timing of inputs.

I Suppose that lit is not perfectly variable, but is chosen at some point in
time between t − 1 and t. Denote this point at which it is decided as
t − b, where 0 < b < 1.



I Now let ω follow a Markov process between subperiods (t − 1, t − b, t). In
this case, labor is not a function of ω but of ωit−b and therefore:

lit = f (ωit−b, kit) (20)

I What breaks collinearity is the movement in productivity after t − b,
therefore allowing independent variation to identify labor coefficient.

I Note, ACF also propose run first stage in all inputs, then identify labor in
second stage with lagged variable as instrument.



LP revisited

I The same critique applies to the LP procedure, however, it more severe
due to the use of variable input as proxy (intermediate inputs).

I It is hard to think of such a variable zit that would affect a firms’s labor
choice but not its material choice, either directly or indirectly through the
labor choice.

I Input demand equations for l ,m with simple Cobb-Douglas will show
forcefully. Labor will drop out!

I (LP can be fixed by either estimating all in second stage or using
Wooldridge GMM version).



ACF

I ACF go on and draw similarity with other literature in dynamic panel
estimation. Insight in impossibility to identify variable static inputs.

I ACF procedure is

yit = φt(mit , kit , lit) + ηit (21)

I Construct ξit+1 from first stage, and set moments for l , k where we
have more instruments and can test overidentifying restrictions and
therefore whether our model makes sense.

I Know your industry and the institutional details to guide this
analysis!



Wooldridge GMM

I Wooldrigde (2009) proposes an alternative implementation that
deals with the identification of the production function coefficients
and is robust to the criticism of Ackerberg, Caves and Frazier
(2006).

I The approach relies on a joint estimation of a system of two
equations using GMM, by specifying different instruments for both
equations.

I Let’s consider the Wooldrigde approach while relying on materials
mit to proxy for productivity (i.e. Wooldrigde/LP).

I This implies the following moments for identification

E (ηit + ξit |Iit) = 0 (22)



Wooldridge Ctd.

I where It is the conditioning set at t.

I The condition on ηit is related to ACF first stage where
ηit = yit − βl lit − βmmit − βkkit − h(lit ,mit , kit ;βh,t), and βh,t are
the polynomial coefficients.

I The second moment is related to the second stage in the procedure
described above and
ξit+1 = h(lit+1,mit+1, kit+1;βh,t+1)− g (h(lit ,mit , kit ;βh,t));βg ), and
βg are the polynomial coefficients on g .

I The sample analogue of these moments will generate estimates for
(βl , βm, βk) in addition to the polynomial coefficients on the
function ht(lit ,mit , kit) and g(ωit).

I Advantage: bootstrapping is not required for se, and more efficient
estimators by using cross-equation correlations.

I Disadvantage: cost of searching over a larger parameter space, i.e.
over production function coefficients, all polynomial coefficients used
to approximate the functions ht(.) and g(.).



Scalar unobservable

I We can extend the model to allow for 2 unobservables that impact
investment, e.g. unobserved demand conditions µit , now we have

it = it(kt , ωt , µt) (23)

I we cannot invert and need a second control variable to invert and proceed
(also see De Loecker, 2007). Call this variable st , and we have a bijection
(it is onto) Υ(.)

iit
sit

= Υt(kit , ωit , νit) (24)

ωit = Υ−1
1,t (kit , iit , sit) (25)

I and go from here. Again, this might help as it creates addiditonal
variation to identify φ(.).

I Note, we need independent Markov processes for two unobservables
otherwise we can no longer identify coefficient. The problem comes from
the fact that the expectation of productivity becomes dependent on both
lagged productivity and lagged demand shock. No more identifying
variation left due to law of motion on capital.



Conclusions Methodology

I Different data and industry setting will require you to worry about the
various aspects and dimensions of the problem

I No general way to go about this, except for thinking through how the
various unobservables enter the model and your econometric procedure.

I You will always get results, question is on identification believability!



Applications and Extensions

I Pavcnik (2002) relies on the OP method to investigate the productivity
gains from trade liberalization in Chilean manufacturing sector. She then
uses estimates for productivity to investigate reallocation due to exit and
finds that reducing tariffs lead to a productivity increase for the industry.

I Finds same bias on labor and capital, and have impact on returns to scale
and productivity estimates.

I Run simple probit regressions on productivity and tariffs, and run the OP
decomposition which shows reallocation effecs while trade liberalization
occured.



Extending the framework

I If you want to study impact of a firm-level decision (like exporting, RD,
ownership structure, etc.) on productivity, you have to verify how it enters
the information structure and whether it is correlated with the innovation
in productivity.

I De Loecker (2007 JIE) modifies OP model to incorporate different market
structures for exporters, in order to separate out the learning by exporting
from the self-selection hypothesis offered by theory. This paper now has
it = it,e(kt , ωt) or alternatively have it = it(kt , ωt , et). He finds very
different coefficients of production function, and importantly different
estimates for LBE - different productivity trajectories - relying on these
techniques.

I De Loecker (2013) in addition, relaxes exogenous Markov process for
productivity, by allowing ωit = g(ωit−1, eit−1) while estimating production
function.

I De Loecker (2011 ECMA) applies two unobservables
(productivity-demand)



Control functions: OP, LP and ACF

I The main insight of OP (and subsequent modifications) is to rely on
a FOC that relates an observable decision d to unobserved
productivity ω and other observables (in OP capital k), and keep it
as a vector kit .

dit = d(kit , ωit) (26)

I The properties of d(.) depend on the exact FOC and in the case of
OP this is an investment policy function. The properties will then
determine under which conditions we: 1) obtain such a function,
and 2) when this is invertible such that:

ωit = d−1(dit , kit) (27)



Identification pieces

I The entire literature has focussed on the exact conditions under
which d(.) correctly proxies for productivity and its implications for
identification.

I Input classification into variable/fixed and static/dynamic (ACF).

variable fixed
static no adj/pbp no adj/ across periods

dynamic state var adj cost/state var

I Crucial regardless above:

1. Capital l.o.m.: Kt = (1− δ)Kt−1 + It−1,
2. Productivity process: ωt = g(ωt−1) + ξt .

I Determines moment conditions: E(ξtx) = 0, with x inputs and
either t or t − 1.

I Reality: survey questions related to end of year/ retrospective, etc.
Puts the emphasis on when do firms make decisions, and what do
they know when do so – i.e. information set content Iit .



Control functions: OP, LP and ACF: ctd.

I This control function replaces productivity and gives rise to so-called
two step (OP, LP and ACF) or one-step procedure (due to
Wooldrigde (2009)).

1. Two-stage appproach:

yit = αl lit + αkkit + d−1(dit , kit)︸ ︷︷ ︸
φ(lit ,kit ,dit )

+εit (28)

yit = αl lit + αkkit + g(φit−1 − αl lit−1 − αkkit−1) + ξit + εit (29)

E

(ξit + εit)

 lit−1

kit
φ̂it−1

 = 0 (30)

2. One-step approach:

yit = αl lit + αkkit + g(d−1(dit−1, kit−1)) + ξit + εit (31)



Control functions: OP, LP and ACF: synthesis

I One could now spend rest of the day discussing details under which
DGP moment conditions are valid – i.e. identification holds.

I I refer to ACF for an excellent treatment of the problem and
summarize by:

I OP relies on dynamic control, investment, and requires all relevant
state variables in k . Implications: invertibility proof is non-trivial and
in practice becomes bindnig when environment is slightly different
(R&D, export, FDI, etc.)

I LP relies on static control, intermediate input, and requires fully and
correctly specified input demand equation but invertibility almost for
free. Holds in large class of models of imperfect competition
(important later).

I ACF refines the exact moment conditions guaranteeing identification.

I Selection matters but unbalanced panel goes a long way.



Control functions: special case

I Intuition behind approach comes from a special case (2× OLS):

I ωit = ωit−1 + ξit and LP (m(.) log-linear)

yit = αl lit + αkkit + γ1dit + γ2kit︸ ︷︷ ︸
ωit

+εit

1st stage: yit = φ(lit , kit , dit) + εit

yit = αl lit + αkkit + ωit−1 + ξit + εit

yit = αl lit + αkkit + φit−1 − αl lit−1 − αkkit−1︸ ︷︷ ︸
ωit−1

+ξit + εit

2nd stage: ∆yit = αl∆lit + αk∆kit + ξit + ∆εit

I If both labor and capital are set a period ahead for example, running
OLS provides consistent estimates of α.



Active improvements to performance

I The literature, and practice, by and large relies on an exogenous
process for ω which is often internally inconsistent but moreover
counterfactual.

I Firms spend lots of resources to actively improve performance
(investments, R&D, HR practices, advertizing, training, etc.) or their
environment changes (trade liberalization, deregulation, taxes, etc.)

I At some level we miss this action A in the process: g(ωt−1,At−1):

1. misspecified process leads to omitted variable bias
2. Incorrect conclusions about drivers of productivity growth

I Take simple process before: bias comes from error

∆yit = αl∆lit + αk∆kit + ξit +Ait−1 + ∆εit (32)

I Evaluate E(At−1∆xt) = 0? and therefore heterogeneity becomes
important – otherwise subsumed in gt(.).



What have we learned?

I In the absence of obvious instruments (input prices; sources of
random input choices) and/or imposed time series properties (fixed
effects in efficiency/demand) we have an alternative approach to use
optimal behavior (input demand or investment).

I Great deal of flexibility to the applied researcher provided that
underlying model is spelled out.

I For now note that we can allow for qit = f (xit ;β) + ωit – in theory
at least.

I Departures from exogenous productivity are important and matter a
lot!



TFP, TFPR, TFPQ and aggregation

I Across a variety of fields (macro-micro) economists talk about TFP,
both its measurement and drivers.

I Traditional approach in macro and industry-wide data relied on
correct price indices to correct for inflation.

I Move to micro data invalidates this approach if we care about the
heterogeneity and anything but the aggregate.

I Recently use of TFPR and TFPQ (cfr Intro); and there equal
confusion on welfare relevance – i.e., we do not want more resources
towards high TFPQ firms unless homogeneous goods setting! In
other words we need demand and leads to TFPR.

I Tension comes from origins of production functions (ag econ with
product homogeneity) to its applications to highly differentiated
manufacturing and service sectors – the real challenge ahead.
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